

Dissolved Gases

Lecture by Jens Daniel Müller In: Analytical / Environmental Chemistry I University Rostock, 03.06.2019

Contact jens.mueller@io-warnemuende.de Twitter: Jens_D_Mueller

Outline

- Motivation
- Solubility of gases
- O₂ and CO₂ in the global ocean
 - Physical and biological pumps
- Marine CO₂-system
 - Equilibrium reactions
 - Freshwater vs seawater
 - Alkalinity
 - 4 measurable parameters
 - Ocean acidification
- Lake Nyos disaster

Motivation: The Oceans Role in Climate Change

Motivation: The Oceans Role in Climate Change

Oceanic CO₂-uptake counteracts climate change at the cost of acidification, with unpredictable consequences for marine ecosystems. What are the chemical mechanisms involved?

Recap: Pressure of Gases in the Atmosphere

John Dalton (1766 –1844)

Dalton's Law for ideal gases:

$$P=\sum_{i=1}^k p_i$$

P = total pressure of gas mixture
p_i = partial pressure *i*-th component of mixture

Definition of partial pressure:

$$p_i = P \cdot x_i = P \cdot \frac{n_i}{\sum_{j=1}^k n_j}$$

 x_i = Mole fraction *i*-th component of mixture n_i = Number of moles of *i*-th component of mixture

William Henry (1774 - 1836)

Henry's Law:

 $[\mathbf{G}] = K_{\mathrm{H}} \cdot p\mathbf{G}$

[G] = Concentration of gas G in liquid phase; pG = Partial pressure of gas G in gas phase; $K_{\rm H}$ = Henry's Law constant for gas G = f(T,S)

Sample calculation: Solubility of Oxygen

Saturation vapor pressure H_2O

Oxygen

- Essential for biogeochemical processes in water, e.g. oxidation
- Consumed during mineralisation of organic matter
- Prerequisite for all higher trophic levels
- Solubility regulates O₂ concentration in ventilated water masses

Table 11.1 Henry's law constants for selected gases dissolved in water at 25 °C.

Gas	$K_{\rm H}$ / mol L ⁻¹ Pa ⁻¹
02	1.3×10^{-8}
N ₂	6.4 × 10 ⁻⁹
CH ₄	1.3 × 10 ⁻⁸
C0 ₂	3.3 × 10 ⁻⁷
S02	1.8×10^{-5}
NH ₃	5.7×10^{-4}
Hg	8.6 × 10 ⁻⁷
CCI4	3.7 × 10 ⁻⁷
CH ₃ COCH ₃	3.9×10^{-3}

Partial pressure of oxygen at 25°C in air saturated with water vapor

$$\begin{split} \mathsf{P}_{\text{O2}} &= (\mathsf{P}_{\text{total}} - \mathsf{P}_{\text{H2O}}) \times \mathsf{X}_{\text{O2,dry}} \\ \mathsf{P}_{\text{O2}} &= (1.01 \times 10^5 - 3.2 \times 10^3) \ \mathsf{Pa} \times 0.209 \ = 2.04 \times 10^4 \ \mathsf{Pa} \end{split}$$

Concentration of O_2 freshwater in equilibrium with atmosphere $[O_{2,aq}] = 1.3 \times 10^{-8} \text{ mol } L^{-1} \text{ Pa}^{-1} \times 2.04 \times 10^4 \text{ Pa}$ = 2.7 x 10⁻⁴ mol L⁻¹ = 8.5 mg L⁻¹

Surface Distribution of Oxygen in the Global Ocean

Surface distribution of O₂ in the global ocean reflects its decreasing solubility with increasing sea surface temperature (SST)

Vertical Distribution of Oxygen in the Global Ocean

World Ocean Circulation Experiment (WOCE), Graphs from: http://www.ewoce.org

Physical Carbon Pump (aka: Solubility Pump)

- Poleward decrease in sea surface temperature favors O₂ (white arrows) and CO₂ (colored arrows) solubility and increases seawater density
- Downwelling in the North Atlantic (e.g. Labrador Sea) ventilates ocean interior

Organic Carbon Pump (aka: Soft Tissue Pump)

North Atlantic

Changes in Seawater Chemistry due to Uptake of Anthropogenic CO₂

Why is so much carbon stored in the ocean? Why does the CO₂ uptake decrease seawater pH?

 $CO_2(g) \rightleftharpoons CO_2(aq)$ $CO_2(aq) + H_2O \rightleftharpoons H_2CO_3$ $CO_{2}^{*} = CO_{2}(aq) + H_{2}CO_{3}$ $CO_2^* + H_2O \Longrightarrow H^+ + HCO_3^ HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$ $K'_{\rm H} = K'_0 = \frac{[{\rm CO}_2^*]}{p{\rm CO}_2}$ $K_1' = \frac{[\text{HCO}_3^-] \cdot [\text{H}^+]}{[\text{CO}_2^*]}$ $K_{2}^{'} = \frac{[CO_{3}^{2-}] \cdot [H^{+}]}{[HCO_{2}^{-}]}$

Experiment:

- (1) Equilibrate different waters with a gas phase CO₂ concentration of 280 µatm (pre-industrial)
- (2) Increase gas phase CO_2 concentration to 400 µatm (present) and re-equilibrate

Question:

How big is the CO₂ uptake by the different types of water? (expressed as increase in dissolved inorganic carbon concentration)

The Alkalinity Concept

<u>Alkalinity A_T</u>

- Defined as the excess of pronton donors over proton acceptors
- Carbonate Alkalinity: $A_T \approx [HCO_3^-] + 2[CO_3^{2-}] + [OH^-] - [H^+]$
- Buffer reaction controls the CO₂uptake capacity of seawater

Earth Temperature: Stabilizing CO₂ Feedback Mechanism

Four measureable parameters of the CO₂ system

Total dissolved inorganic carbon (DIC, C_T , TCO₂, Σ CO₂) Book-keeping parameter for carbon 0.5% 88.6% 10.9% $DIC = \left\lceil CO_2(aq) \right\rceil + \left\lceil HCO_3^{-} \right\rceil + \left\lceil CO_3^{2-} \right\rceil$ Total alkalinity (TA, $A_{\rm T}$) **Booking-keeping parameter** for acid-binding capacity 76.8% 18.8% 4.2% 0.2% $TA = \left\lceil HCO_{3}^{-} \right\rceil + 2\left\lceil CO_{3}^{2-} \right\rceil + \left\lceil B(OH)_{4}^{-} \right\rceil + \left\lceil OH^{-} \right\rceil + \left\lceil HPO_{4}^{2-} \right\rceil + 2\left\lceil PO_{4}^{3-} \right\rceil + \left\lceil SiO(OH)_{3}^{-} \right\rceil + \left\lceil NH_{3} \right\rceil + \left\lceil HS^{-} \right\rceil$ $-\left[H^{+}\right]-\left[HSO_{4}^{-}\right]-\left[HF\right]-\left[H_{3}PO_{4}\right]$ pН Paramater for acidity of seawater $p\mathbf{H} = -\log[\mathbf{H}^+]$ Partial pressure of CO₂ Governs $p\text{CO}_2 = \frac{\left[\text{CO}_2(\text{aq})\right]}{K_{\text{H}}}$ air-sea gas exchange

If the dissociation constants and concentrations of all acid-base species are known: The CO₂ system is fully determined when 2 out of 4 measurable parameters are known Formation of particulate organic matter – Uptake of CO_2 or HCO_3^-

 $CO_2 + H_2O \Rightarrow (CH_2O)_{org} + O_2$

$$\Delta A_{T} = 0 \ \Delta C_{T} = -1 \ pH^{\uparrow} \ pCO_{2} \downarrow$$

$$\begin{array}{rcl} \mathsf{HCO}_3^- + \,\mathsf{H}_2\mathsf{O} & \Rightarrow & (\mathsf{CH}_2\mathsf{O})_{\mathsf{org}} + \,\mathsf{OH}^- + \,\mathsf{O}_2\\ & & & & & \\ \Delta A_{\mathsf{T}} = 0 & \Delta C_{\mathsf{T}} = -1 & p \,\mathsf{H} \,\uparrow & p \,\mathsf{CO}_2 \,\downarrow \end{array}$$

Respiration of particulate organic matter

 $(CH_2O)_{org} + O_2 \Rightarrow CO_2 + H_2O$ $\Delta A_T = 0 \ \Delta C_T = +1 \quad pH \downarrow \qquad pCO_2 \uparrow$

Formation of particulate calcium carbonate

$$Ca^{2+} + 2 HCO_{3}^{-} \Rightarrow CaCO_{3} (s) + CO_{2} + H_{2}O$$
$$\Delta A_{T} = -2 \Delta C_{T} = -1 \qquad pH \downarrow \qquad pCO_{2} \uparrow$$

Dissolution of particulate calcium carbonate

 $CaCO_{3} (s) + CO_{2} + H_{2}O \implies Ca^{2+} + 2 HCO_{3}^{-}$ $\Delta A_{T} = +2\Delta C_{T} = +1 \quad pH \uparrow \qquad pCO_{2} \downarrow$

Biogeochemical processes in the parameter space of the marine CO₂ system

Zeebe and Wolf-Gladrow (2001): CO₂ in Seawater: Equilibrium, Kinetics, Isotopes

Marine CO₂ system: the ocean's major buffer system

Bjerrum plot of carbonic acid species in seawater

Ocean Acidification: Impact on Biota

Estimated change in annual mean sea surface pH and carbonate ion (CO_3^{2-}) concentration between the pre-industrial period (1700s) and the present day (1990s).

Reduced pH and carbonate ion availability impairs calcification conditions for marine calcifiers such as the phytoplankton species Emiliania Huxleyi.

- Lake Nyos in NW Cameroon with max. depth of 210 m
- 21 August 1986: sudden release of about 100,000–300,000 tons of carbon dioxide
- Gas cloud initially rose 100m high, 25m high wave hit the coast
- Being heavier than air, CO₂ descended onto nearby villages, displacing air
- Around 1,700 people and 3,500 livestock killed within 25 kilometres

- Pocket of magma beneath lake leaks ~90.000 tons CO₂ per year into water
- Lake Nyos is thermally stratified: warm water near surface floating on colder water layers near bottom
- Saturation with CO₂ at depth
- Most of the time, stratification is stable and CO₂ remains in solution
- Uplift of water masses results in oversaturation, spontaneous degassing and self-powered uplift of additional water masses
- Trigger of overturn and outgassing in 1986 remains unknown: landslide, small volcanic eruption or cool rainwater?

Excursion: Lake Nyos disaster – prevention strategies

- Continuous degassing of the lake since 30 January 2001
- Polyetheylene tubes (diameter 14.5 cm) lowered to the base of the lake
- Active pumping to begin rising water
- CO₂ degassing above saturation horizon causes faster rising, 50m water fountain and sucking up more water behind it

Self-powered airlift pump

Take home messages

- Henry's law describes the solubility of gases
- Physical and biological pumps control O₂ and CO₂ in the global ocean
- Alkalinty from weathering processes causes high CO₂ storage capacity of seawater
- Ocean acidification is a major threat to marine ecosystem stability
- Lake Nyos disaster