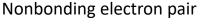
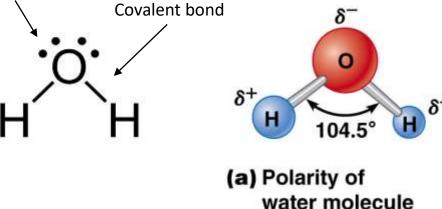

Water

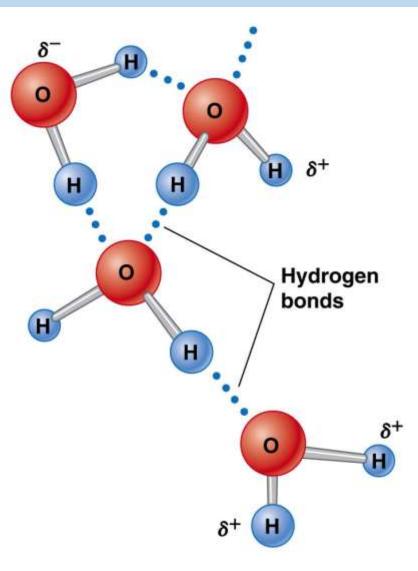
Lecture by Jens Daniel Müller In: Analytical / Environmental Chemistry I University Rostock, 03.06.2019

Contact jens.mueller@io-warnemuende.de Twitter: Jens_D_Mueller Water covers 71% of the Earth's surface...

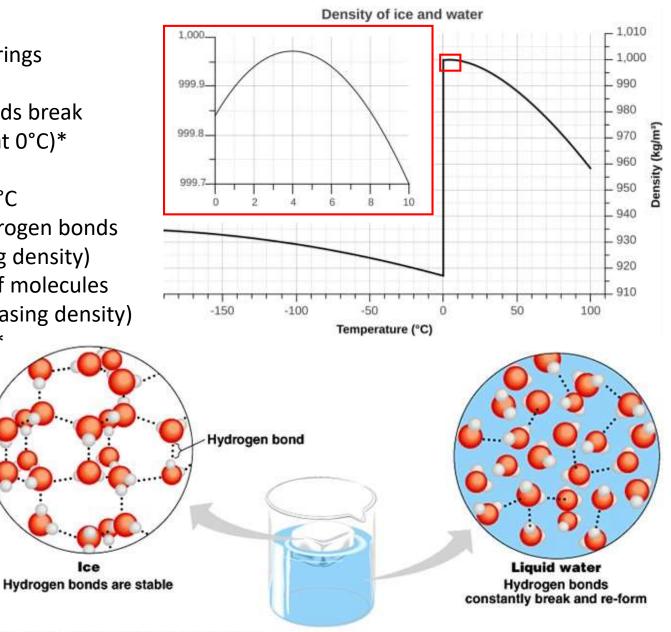

...and plays a central role in controlling its climate and conditions for live!



Outline

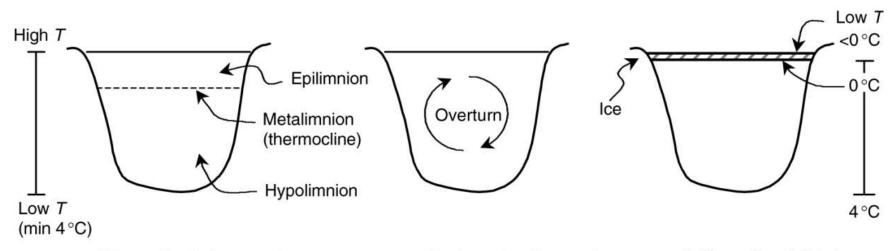

- Physico-chemical properties of water
- Density anomaly
 - The temperate lake
- Melting, evaporation, heat transport
 - Water as a climate regulator
- From pure water to oceans
 - Origin of salt
 - Ocean conveyor belt
- Speciation in water
 - Activity vs concentration
 - pH-dependence
 - Phosphoric acid

- Two hydrogen atoms covalently bound to central oxygen atom
- 4 out of 6 outer-shell electrons of oxygen organized into 2 non-bonding pairs
- Repulsions of negative charge causes distorted tetrahedral structure
- Negative charge concentrated at the oxygen end of the molecule (electric dipole)
- Dipole-dipole attraction
- Hydrogen bonding in liquid and solid


© 2012 Pearson Education, Inc.

(b) Hydrogen bonding between water molecules Ice (solid)

- Hexagonal puckered rings
 Melting
- 12% of hydrogen bonds break
- Density ice < water (at 0°C)*Water (liquid)
- While heating to 100°C
 - Another 8% hydrogen bonds break (increasing density)
 - Kinetic energy of molecules increases (decreasing density)
- Highest density ~4°C*

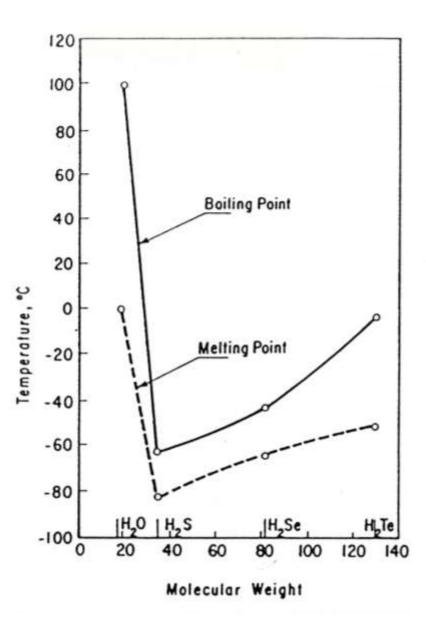

*density anomaly

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Consequences of the density anomaly: Seasonality in lakes in temperate regions

- Thermal stratification after cooling below 4°C at surface
- Surface ice formation
- Non-frozen deeper water layers

Warm climate (summer)


Solar radiation penetrates the epilimnion, stimulating algal photosynthesis and producing oxygen. Little solar radiation reaches the hypolimnion; there is no photosynthesis, but bacterial decomposition of organic matter causes depletion of oxygen. Cool weather (autumn)

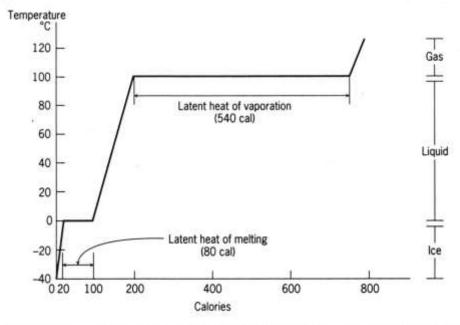
Cooled surface water sinks to the bottom, forcing bottom water upwards, creating a homogeneous (*T* and nutrients) environment. Cold weather (winter)

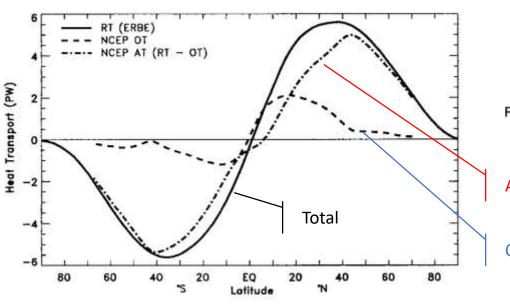
Ice forms on the surface; temperature relatively uniform below ice layer.

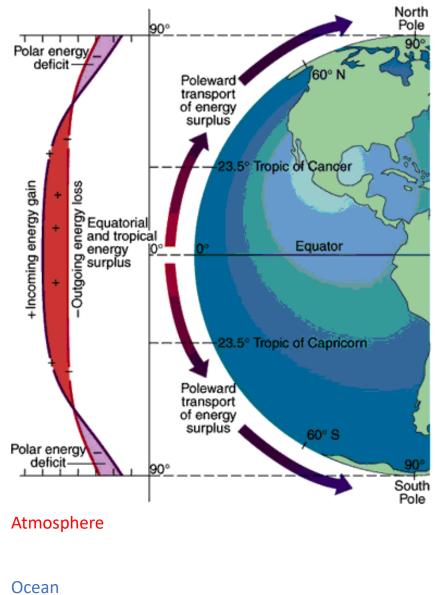
How would that compare to the ocean...?

Water - changing the state of matter

- Drastically increased melting and evaporation points of water compared to hydrogen compounds of heavier elements, due to hydrogen bonding
- High heat capacity
- A lot of energy required to heat and evaporate water
- Effective climate regulator

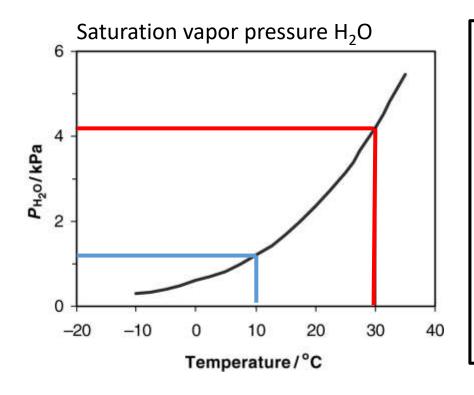



FIGURE 2.9. The phase transitions of water as caused by changing heat content. Slopes of the lines indicate heat capacity.

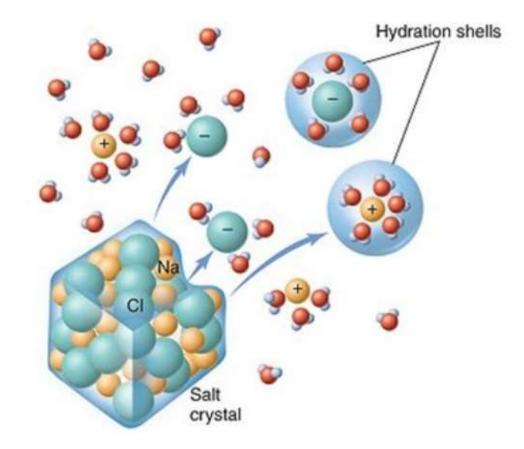

Presence of water reduces temperature gradients between:

- Poles and equator
- Summer and winter
- Day and night

Weather systems and ocean currents result from constant flow of heat from the tropics to the poles:


- Latent heat flux: evaporation and precipitation (change of state)
- Sensible heat flux: surface ocean currents (change of temperature)

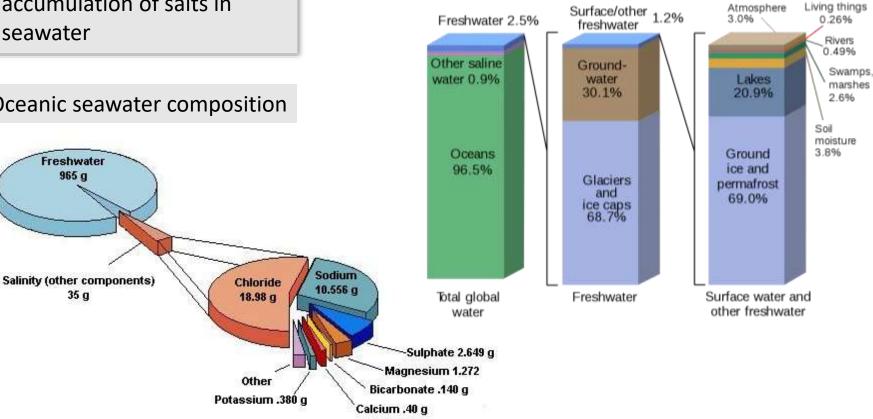
How does the latent heat flux of water vapor in the atmosphere compare to the sensible heat flux by surface ocean currents?


Required information:

How much water is in air? $P_{H2O,real} = HR / 100 \times P_{H2O,sat}$ pV = nRT $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ Molar mass $(H_20) = 18.02 \text{ g/mol}$

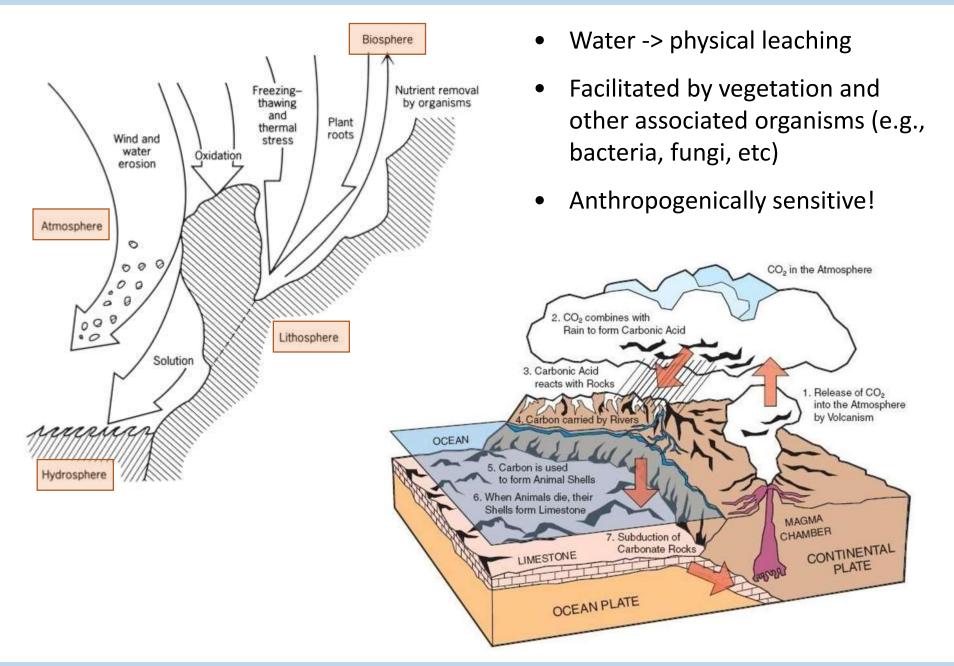
How much heat is realized by precipitation? Latent heat of vaporation $(H_20) = 2258 \text{ J/g}$ (compare previous slide, 1 cal = 4,1868 J)

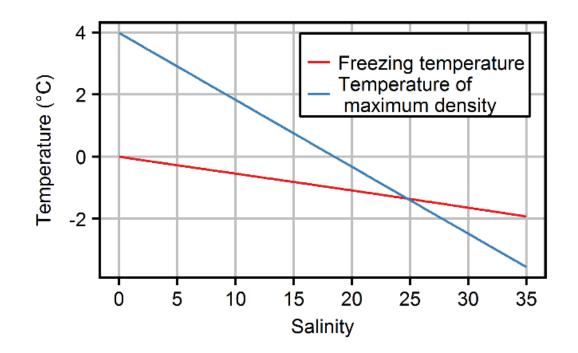
How much water must be cooled to transport the same amount of energy? Heat capacity (seawater) = 3.9 Jg⁻¹K⁻¹


Water as a solvent

- High dipole moment and ٠ polarity cause high solubility of many ionic substances
- Hydration determined by ٠ charge density of ions
- High solubility results in • accumulation of salts in seawater

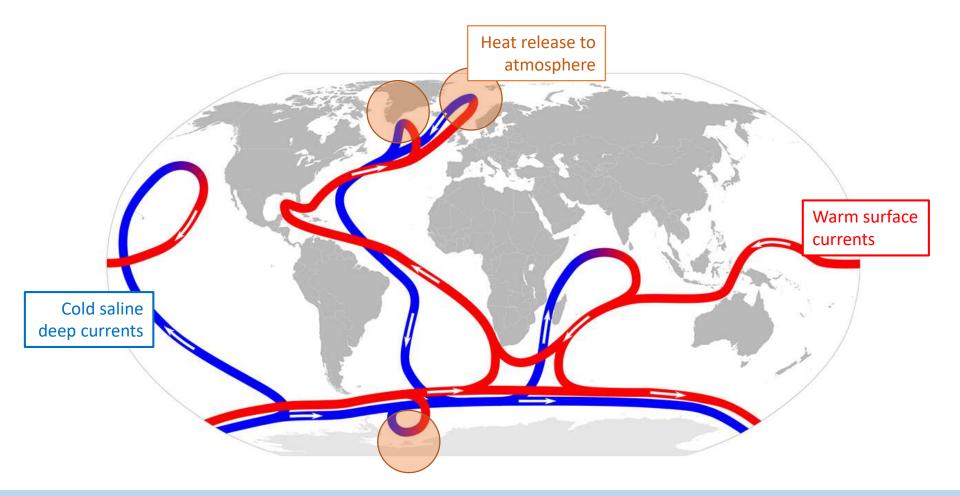
Table 9.2 Charge and radius properties of the alkali metals in aqueous solution.


	Li+	Na ⁺	K+	Rb ⁺	Cs+
Ionic radius / pm	60	95	133	148	169
Charge density / C pm ⁻¹	0.0167	0.0105	0.0075	0.0068	0.0059
Hydrated radius / pm	340	276	232	228	228
Hydration number	23.3	16.6	10.5	10	9.9


Earth's water reservoirs

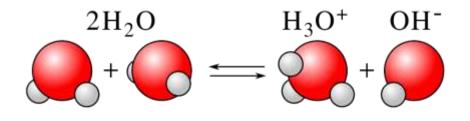
Oceanic seawater composition

Source of salt: Continental weathering

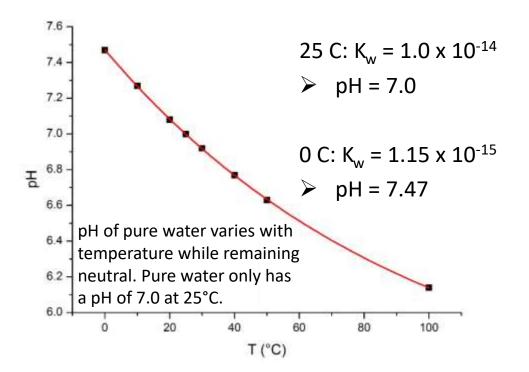

Watch out:

The presence of ions in water (expressed as salinity) changes the relation of the freezing point and the temperature of maximum density!

Does this have environmentally relevant consequence?


Thermohaline circulation: The Global Ocean Conveyor Belt

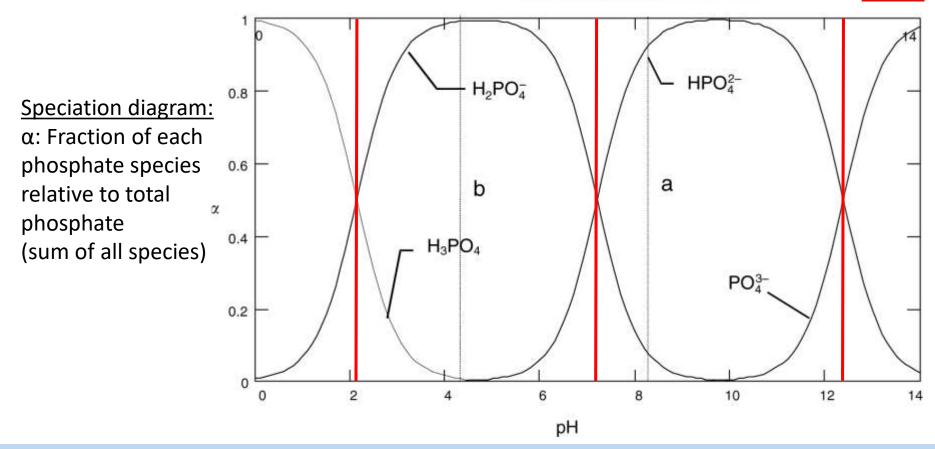
- High latitude global ocean: Cold water (as cold as -1.9 °C) sinks due to high density
- > Deep convection allows to maintain heat transport
- Supported by increasing salinity during ice formation
- Would not be possible in a "freshwater ocean" due to density anomaly



- Self-ionisation and amphoterism of water
- pH = -log H₃0⁺
- Neutral pH: [H₃O⁺] = [OH⁻]
- Equilibrium reactions depend on temperature and chemical environment
- Watch out: concentration units!
 - mol/L
 - mg/kg
 - mol/kg
 - Often useful for element under consideration

(18mg/L NH₄⁺ ~ 62 mg/L NO₃⁻ => **14 mg/L N)**

Ionic product of water $K_w = [H_3O^+] \times [OH^-]$


Speciation in water: Example phosphoric acid – a triprotic acid

- Chemical properties of elements and compounds depend on speciation and therefore on chemical environments
- First approximation: activity = concentration
- Often useful: dependence on key parameter such as pH

$H_3PO_4 \rightleftharpoons H_2PO_4^- \rightleftharpoons HPO_4^{2-} \rightleftharpoons PO_4^{3-}$

 Table 10.1
 Acid dissociation constants for phosphoric acid.

	Ka	p <i>K</i> a
First dissociation	7.1×10^{-3}	2.15
Second dissociation	$6.3 imes 10^{-8}$	7.20
Third dissociation	4.2×10^{-13}	12.38

Interactions between ions in solution: Activity or the "effective concentration"

TABLE 5.2

Various Expressions for the Calculation of Single Ion Activity Coefficients

Approximation	Equation ^a	Approximate [ionic streng	e Applicability th (M)]
Debye-Hückel	$\log \gamma = -Az^2 \sqrt{I}$	<10-2	
Extended Debye-Hückel	$= -Az^2 \frac{\sqrt{I}}{1 + Ba\sqrt{I}}$	<10-1	
Güntelberg Davies	$= -Az^{2} \frac{1 + Ba\sqrt{I}}{1 + \sqrt{I}}$ $= -Az^{2} \frac{\sqrt{I}}{1 + \sqrt{I}}$	<10 ⁻¹ useful in solutions of several electrolytes	
	$= -Az^2 \left(\frac{\sqrt{I}}{1+\sqrt{I}} - 0.2I \right)$	<0.5	1
Brönsted-Guggenheim	$\ell n \gamma_5 = \ell n \gamma_{DH_5} + \sum_{i=1}^{j} A_{S_i}(C_i) + \sum_{i=1}^{j} \sum_{k=1}^{j} B_{S_{ik}}(C_i)(C_k) + \cdots$	≤4	

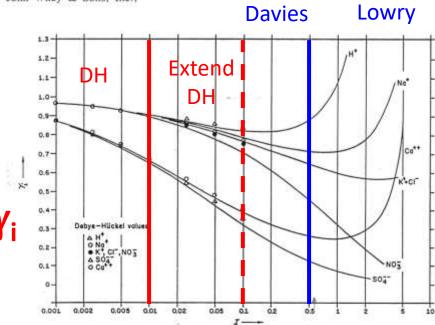
Source: From Aquatic Chemistry, W. Stumm and J. J. Morgan, copyright © 1981 by John Wiley & Sons. Inc., New York, p. 135. Reprinted by permission.

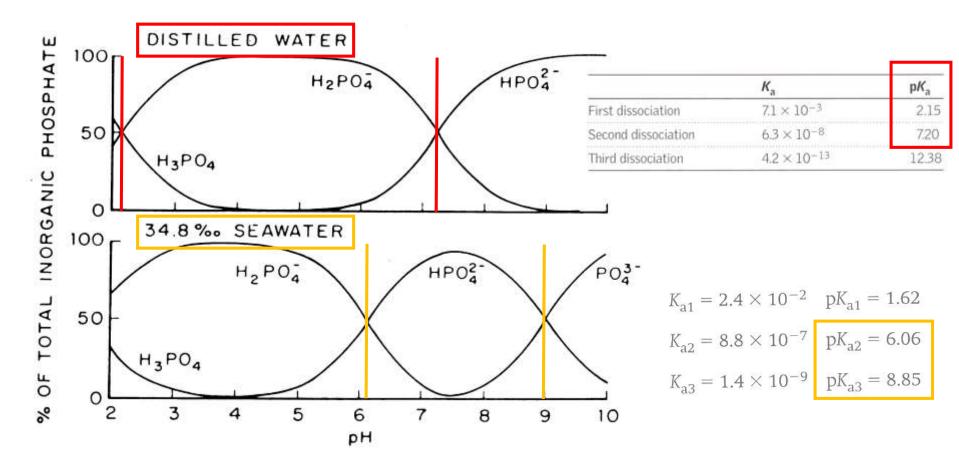
*Values for the constants can be found in Stumm and Morgan (1981).

A= constant, characteristic of the ion

z = charge of the ion

Ionic Strength: $I = 1/2 \Sigma c_i \cdot z_i^2$




FIG. 2.15. Single ion activity coefficients vs. ionic strength for some common ions. Solid lines represent the values calculated by the mean salt method. Debye-Hückel values were calculated using equation (2.76), with $10^{+}/\tilde{g}_{12} = 9$ for H⁺; 4 for Na⁺; 3 for K⁺, Cl⁺, NO⁻; 5 for Ca⁺⁺; and 4 for SO⁻₂. The Debye-Hückel Y₁ values for the monovalent ions converge, within experimental error, for 1 < 0.01.

Bronsted –

 $a_i = \gamma_i \cdot c_i$

Calculation of single ion

activity coefficients

Fig. 14-1 Distribution of phosphoric acid species as a function of pH in distilled water and seawater (Atlas, 1975).

Summary: Properties of water and their importance

Property	Comparison	Importance	
Heat capacity (Cp; cal $g^{-1} \circ C^{-1}$) Thermal energy to raise 1 gm of a substance by 1 °C.	Highest of all solids & liquids, except liquid NH ₃	Prevents extreme ranges in temperature; Energy transfer by water movements is large	
Heat of fusion ($\Delta H = 79$ cal g ⁻¹) Energy needed to break the hydrogen bonds.	Highest except for NH ₃	Absorption or release of latent heat results in large thermostatic effects. Important for energy transfer and climate.	
Heat of vaporization ($\Delta H = 540$ cal g ⁻¹) Energy needed to convert water to vapor	Highest of all liquids	Thermostatic effect; Energy transfer	
Boiling point (100 °C; projected -68°C) Freezing point (0 °C; projected -90 °C)	Much higher than expected (compared to other hydrides)	Water exists in 3 phases within the critical temperature range that accommodates life	
Heat of freezing; only 1/7 that of evaporation	Low; Water structure can move easily into ice.	Implying relatively small difference in the # of bonds between water and ice	
Surface tension; water likes itself relative to most other surfaces (7.2 x 10 ⁹ N m ⁻¹) Measure of the strength of a liquid surface	Highest of all substances	Waves, drops and aerosol sea salt formation. Cell physiology	
Dielectric constant; Charge insulation and dissolving power as a result of ion hydration (87 at 0 °C, 80 at 20 °C)	Highest of all substances except H ₂ O ₂ and HCN	Solubility of salts & ion reactions	
Dissolving power	Highest of all liquids both # of substances and quantities	Implications for biological and physical phenomena	
Electrolytic dissociation	Very small	A neutral substance, yet contains both H ⁺ and OH ⁻ ions	
Transparency Absorption of radiant energy is large in IR and UV; Relatively uniform in the visible.	Relatively large	Water is "colorless"; Important for photosynthetic and photochemical reactions	
Conduction of heat (a molecular process)	Highest of all liquids	Important for small-scale heat transfer, as in living cells.	
Molecular viscosity (= 10 ⁻³ N s m ⁻²) Measure of resistance to distortion (flow)	Less than most other liquids at same temperature.	Water flows readily to equalize pressure differences.	
Compressibility	Relatively low (more similar to a solid)	Large increase in presses with depth causes only slight increase in density	
Thermal expansion (for pure water it is at 4 °C)	Temperature of maximum density decreases with increasing salinity.	Waters with salinity less than 25 have maximum density at tempemperatures above the freezing point	

Take home messages

- Physico-chemical properties of water determine its role in the environment
- Density anomaly regulates seasonality in temperate lakes
- Water acts as a climate regulator due to high heat capacity and heat of vaporation
- Presence of salt as a prerequisite for deep ocean convection
- Speciation in water depends on chemical environment, e.g. solution pH