Last updated: 2020-04-23

Checks: 7 0

Knit directory: Baltic_Productivity/

This reproducible R Markdown analysis was created with workflowr (version 1.6.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20191017) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8c4ccb4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/ARGO/
    Ignored:    data/Finnmaid/
    Ignored:    data/GETM/
    Ignored:    data/OSTIA/
    Ignored:    data/_merged_data_files/
    Ignored:    data/_summarized_data_files/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/CT.Rmd) and HTML (docs/CT.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 8c4ccb4 LSBurchardt 2020-04-23 #3 functionality largely improved
html 84b3027 jens-daniel-mueller 2020-04-23 Build site.
Rmd b54b53b jens-daniel-mueller 2020-04-23 deleted wrong legend name (ppp) in deployment plot
html b11301c jens-daniel-mueller 2020-04-22 Build site.
Rmd 30999c4 jens-daniel-mueller 2020-04-22 used ppp_2 in SST time series plots
html 940357e jens-daniel-mueller 2020-04-22 Build site.
Rmd 0b5a17a LSBurchardt 2020-04-21 #3 ++ lot of the issues solved:
html 0055ce4 jens-daniel-mueller 2020-04-17 Build site.
Rmd dfdabc7 jens-daniel-mueller 2020-04-17 correct NA data in plots
html 90ced1b jens-daniel-mueller 2020-04-17 Build site.
Rmd 8ecbd8f jens-daniel-mueller 2020-04-17 separate chunks for criteria, criteria named in plain text, new headers
html ecb4f87 jens-daniel-mueller 2020-04-17 Build site.
Rmd f2a95e8 jens-daniel-mueller 2020-04-17 CT y_axis grid 20
html f0231f7 jens-daniel-mueller 2020-04-17 Build site.
Rmd e801aae jens-daniel-mueller 2020-04-17 figure aspect ratio and uniform color scales
html c9c143e jens-daniel-mueller 2020-04-17 Build site.
Rmd 5528d3d jens-daniel-mueller 2020-04-17 knit: corrected PPP assignment, revised plots
Rmd 160c8f8 LSBurchardt 2020-04-17 #3 reliable enumeration of ppp with individual control variable
html a780d69 jens-daniel-mueller 2020-04-17 Build site.
Rmd 7507a93 jens-daniel-mueller 2020-04-17 PPP labeling with 4 day gap
Rmd 8ea672d LSBurchardt 2020-04-16 #3 end criterion corrected, ppps colored per year
Rmd 33a1b74 LSBurchardt 2020-04-16 #3 commented, prevented from getting rm() warning
html e62e49c jens-daniel-mueller 2020-04-16 Build site.
Rmd 5340b36 jens-daniel-mueller 2020-04-16 revised PPP indentification, added SST plot; referring to l. 581: Warning messages: 1: In rm(start, roll_index_df, roll_index, roll_value,
Rmd 6ba4e29 LSBurchardt 2020-04-15 #3 multiple problems with ppp identification solved: enumeration working, end_criteria only kick in when there was a start, duplicates deleted, minimum CT within 7 day forward is used as identifier for ppp
html 8737000 jens-daniel-mueller 2020-04-15 Build site.
Rmd 5488726 jens-daniel-mueller 2020-04-15 minor aesthetic changes before re-knitting
html a1a3e25 jens-daniel-mueller 2020-04-15 Build site.
Rmd 9cc640c jens-daniel-mueller 2020-04-15 minor aesthetic changes before re-knitting
html be8517f jens-daniel-mueller 2020-04-15 Build site.
Rmd 170667e jens-daniel-mueller 2020-04-15 added plots for PPP
Rmd 01a1f1b LSBurchardt 2020-04-14 var_all unified to names(nc$var)
Rmd 18ca5af LSBurchardt 2020-04-14 #3 ppp ident updated, saving works, enumeration still ongoing
html c4a1b00 jens-daniel-mueller 2020-04-14 Build site.
Rmd 19eeda2 jens-daniel-mueller 2020-04-14 correct NGS limits, all csv files recreated, PPP identification started
Rmd a165baa LSBurchardt 2020-04-14 #3 ppp identificiation: problems when no ppp is found, then if function returns error; saving not finished yet, currrently df_ppp_temp is overwritten every loop –> exist function missing, will be added shortly
Rmd ac9cad0 LSBurchardt 2020-04-09 vroom to write_/read_csv; as.data.frame to as_tibble; tidyverse piping
Rmd d00d732 jens-daniel-mueller 2020-04-08 formatting header # corrected, not knitted yet
html 6f29d15 jens-daniel-mueller 2020-04-08 Build site.
Rmd f33624a jens-daniel-mueller 2020-04-08 knitted with deployment detection
Rmd bf0b055 LSBurchardt 2020-04-07 #3 vroom to write.csv/read_csv; theoretically ready to knit
Rmd abc2d8d LSBurchardt 2020-04-07 #3 deployment values implemented, plotted
Rmd 6907a02 LSBurchardt 2020-04-07 NGS limits changed to: 58.5-59.0 in all files; pivot-wider problem solved in CT.Rmd
html a98bf60 jens-daniel-mueller 2020-04-06 Build site.
Rmd 5d352db jens-daniel-mueller 2020-04-06 calculated CT in equilibrium with atmosphere and updated CT dygraph
Rmd 662c74a jens-daniel-mueller 2020-04-03 added explanatory comments
Rmd c619811 LSBurchardt 2020-04-03 #3 comments
html a4ab61e jens-daniel-mueller 2020-03-31 Build site.
Rmd 1518256 jens-daniel-mueller 2020-03-31 updated dygraphs
html 67a6e2b jens-daniel-mueller 2020-03-31 Build site.
Rmd 5e275d2 jens-daniel-mueller 2020-03-31 CT and flux calculation included
Rmd ef65647 LSBurchardt 2020-03-31 #3 flux calculations and graphs prepared, calculations are not running on my PC though
Rmd 3f94314 LSBurchardt 2020-03-27 #3 windspeed extraction working
Rmd 2ca3f71 LSBurchardt 2020-03-23 #3 extracting S,T, pco2 for all routes; windspeed from GETM with problem
html abc5f7d jens-daniel-mueller 2020-03-18 Build site.
Rmd 10176c9 jens-daniel-mueller 2020-03-18 knit after Lara updated CT
html b80d3a6 jens-daniel-mueller 2020-03-18 Build site.
Rmd 8023757 jens-daniel-mueller 2020-03-18 knit after Lara updated CT
Rmd 03ea2de LSBurchardt 2020-03-18 #1 ready to knit to html: CT with Plot, probably little more explanatory background needed for webside
html 03646b4 jens-daniel-mueller 2020-03-16 Build site.
html 6394f58 jens-daniel-mueller 2020-03-16 Build site.
Rmd 9b0eb49 LSBurchardt 2020-03-15 #1 ready to knit html: SSS working, CT, MLD_pCO2 and SST updated to new data
html e1acb2d jens-daniel-mueller 2020-03-09 Build site.
html c15b71c jens-daniel-mueller 2020-03-09 Build site.
Rmd 9332cae jens-daniel-mueller 2020-03-09 restructered content into chapters, rebuild site, except SSS
Rmd fa8ef89 Burchardt 2020-02-28 #1 new CT.rmd and sss.rmd
Rmd 1663eee Burchardt 2020-02-13 #1 CT new

library(tidyverse)
library(ncdf4)
library(vroom)
library(lubridate)
library(geosphere)
library(dygraphs)
library(xts)
library(here)
library(seacarb)
library(zoo)
# route
select_route <- c("E", "F", "G", "W", "X") 

# variable names in 2d and 3d GETM files
var <- "SSS_east"

# latitude limits
low_lat <- 58.5
high_lat <- 59.0

1 Regional mean salinity

The mean salinity was calculated across all measurments made between march - september in the NGS subregion.

nc <- nc_open(paste("data/Finnmaid/", "FM_all_2019_on_standard_tracks.nc", sep = ""))

# read required vectors from netcdf file
route <- ncvar_get(nc, "route")
route <- unlist(strsplit(route, ""))
date_time <- ncvar_get(nc, "time")
latitude_east <- ncvar_get(nc, "latitude_east")

array <- ncvar_get(nc, var) # store the data in a 2-dimensional array
#dim(array) # should have 2 dimensions: 544 coordinate, 2089 time steps
  
  fillvalue <- ncatt_get(nc, var, "_FillValue")
  array[array == fillvalue$value] <- NA
  rm(fillvalue)
  
  #i <- 5
  for (i in seq(1,length(route),1)){
  
      
    if(route[i] %in% select_route) {
      slice <- array[i,]
      
      value <- mean(slice[latitude_east > low_lat & latitude_east < high_lat], na.rm = TRUE)
      sd    <- sd(slice[latitude_east > low_lat & latitude_east < high_lat], na.rm = TRUE)
      date <- ymd("2000-01-01") + date_time[i]
      
      temp <- bind_cols(date = date, var=var, value = value, sd = sd)
      
      if (exists("timeseries", inherits = FALSE)){
        timeseries <- bind_rows(timeseries, temp)
      } else{timeseries <- temp}
      
      rm(temp, value, date, sd)
      
    } 
  }
nc_close(nc)

fm_sss__ngs <- timeseries %>% 
  mutate(sss = value,
         year = year(date),
         month = month(date))

fm_sss_ngs_monthlymean <- fm_sss__ngs %>% 
  filter(month >=3 , month <=9) %>% 
  summarise(sss_mean = mean(sss, na.rm = TRUE))


rm(array,fm_sss__ngs,nc, timeseries, date_time, 
  i, latitude_east, route, slice, var)

The mean salinity between March and September for the NGS subregion for all years is 6.56.

2 Finnmaid data extraction

pCO2 and SST observations in NGS were extracted for all crossings.

nc <- nc_open(paste("data/Finnmaid/", "FM_all_2019_on_standard_tracks.nc", sep = ""))

#names(nc$var) # uncomment to print variable names and select relevant index
index <- c(9,11) #index of wanted variables SST_east and pCO2 east
var_all <- c(names(nc$var[index]))

# read required vectors from netcdf file
route <- ncvar_get(nc, "route")
route <- unlist(strsplit(route, ""))
date_time <- ncvar_get(nc, "time")
latitude_east <- ncvar_get(nc, "latitude_east")

for (var in var_all) {
  
  #print(var)
  
  array <- ncvar_get(nc, var) # store the data in a 2-dimensional array
  #dim(array) # should have 2 dimensions: 544 coordinate, 2089 time steps
  
  fillvalue <- ncatt_get(nc, var, "_FillValue")
  array[array == fillvalue$value] <- NA
  rm(fillvalue)
  
    for (i in seq(1,length(route),1)){
  
      
    if(route[i] %in% select_route) {
      slice <- array[i,]
      
      value <- mean(slice[latitude_east > low_lat & latitude_east < high_lat], na.rm = TRUE)
      sd    <- sd(slice[latitude_east > low_lat & latitude_east < high_lat], na.rm = TRUE)
      date <- ymd("2000-01-01") + date_time[i]
      
      fm_ngs_all_routes_part <- bind_cols(date = date, var=var, value = value, sd = sd, route=route[i])
      
      if (exists("fm_ngs_all_routes", inherits = FALSE)){
        fm_ngs_all_routes <- bind_rows(fm_ngs_all_routes, fm_ngs_all_routes_part)
      } else{fm_ngs_all_routes <- fm_ngs_all_routes_part}
      
      rm(fm_ngs_all_routes_part, value, date, sd, slice)
      
      } 
    }
  rm(array, var,i)
}   
      
nc_close(nc)

fm_ngs_all_routes %>%  
  write_csv(here::here("data/_summarized_data_files/", file = "fm_ngs_all_routes.csv"))

rm(nc, fm_ngs_all_routes, latitude_east, route,date_time)

3 GETM windspeed

Reanalysis windspeed data as used in the GETM model run were used.

filesList_2d <- list.files(path= "data", pattern = "Finnmaid.E.2d.20", recursive = TRUE)

file <- filesList_2d[1]
nc <- nc_open(paste("data/", file, sep = ""))

names(nc$var)
index <- c(11,12) # index of wanted variables u10 and v10
var_all <- c(names(nc$var[index]))


lon <- ncvar_get(nc, "lonc")
lat <- ncvar_get(nc, "latc", verbose = F)
nc_close(nc)

rm(file, nc)

for (var in var_all){

for (n in 1:length(filesList_2d)) {

file <- filesList_2d[n]

nc <- nc_open(paste("data/", file, sep = ""))

time_units <- nc$dim$time$units %>%     #we read the time unit from the netcdf file to calibrate the time 
    substr(start = 15, stop = 33) %>%   #calculation, we take the relevant information from the string
    ymd_hms()                           # and transform it to the right format

t <- time_units + ncvar_get(nc, "time")

array <- ncvar_get(nc, var) # store the data in a 2-dimensional array
dim(array) # should be 2d with dimensions: 544 coordinate, 31d*(24h/d/3h)=248 time steps

array <- as.data.frame(t(array), xy=TRUE)
array <- as_tibble(array)

gt_windspeed_ngs_part <- array %>%
  set_names(as.character(lat)) %>%
  mutate(date_time = t) %>%
  gather("lat", "value", 1:length(lat)) %>%
  mutate(lat = as.numeric(lat)) %>%
  filter(lat > low_lat, lat<high_lat) %>%
  group_by(date_time) %>%
  summarise_all("mean") %>%
  ungroup() %>%
  mutate(var = var)


if (exists("gt_windspeed_ngs")) {gt_windspeed_ngs <- bind_rows(gt_windspeed_ngs, gt_windspeed_ngs_part)
  }else {gt_windspeed_ngs <- gt_windspeed_ngs_part}

  nc_close(nc)
  rm(array, nc, t, gt_windspeed_ngs_part)
  print(n) # to see working progress
}

print(paste("gt_", var, "_ngs.csv", sep = "")) # to see working progress


rm(n, file, time_units)
}

rm(filesList_2d, var, var_all, lat, lon)


gt_windspeed_ngs <- gt_windspeed_ngs %>% 
  group_by(date_time, var) %>% 
  summarise(mean_value= mean(value)) %>% 
  pivot_wider(values_from = mean_value, names_from = var) %>% 
  mutate(U_10 = round(sqrt(u10^2 + v10^2), 3)) %>% 
  select(-c(u10, v10))

gt_windspeed_ngs %>% 
  write_csv(here::here("data/_summarized_data_files/", file = paste("gt_windspeed_ngs.csv")))

rm(gt_windspeed_ngs)

4 CT calculation

CT was calculated from measured pCO2 based on a fixed mean alkalinity value of 1650 µmol kg-1.

df <- read_csv(here::here("data/_summarized_data_files/", file =  "fm_ngs_all_routes.csv"))

df <- df %>%
  select(date, var, value, route) 

df <- df %>%
  # drop_na() %>% 
  pivot_wider(values_from = value, names_from = var) %>% 
  drop_na()

#calculation of CT based on pCO2 (var1) and alkalinity (var2) as input parameters
#calculation of CT in theoretical equilibrium with atmosphere (CT_equi) based on pCO2_air (var1) and alkalinity (var2) as input parameters

df <- df %>%
  rename(SST = SST_east,
         pCO2 = pCO2_east) %>% 
  #drop_na() %>% 
  mutate(CT = carb(24,
                   var1=pCO2,
                   var2=1650*1e-6,
                   S=pull(fm_sss_ngs_monthlymean),
                   T=SST,
                   k1k2="m10", kf="dg", ks="d", gas="insitu")[,16]*1e6) %>% 
  mutate(year = year(date),
         pCO2_air = 400 - 2*(2015-year),
         CT_equi = carb(24,
                   var1=pCO2_air,
                   var2=1650*1e-6,
                   S=pull(fm_sss_ngs_monthlymean),
                   T=SST,
                   k1k2="m10", kf="dg", ks="d", gas="insitu")[,16]*1e6) %>% 
  select(-c(pCO2_air, year))


df %>% 
   write_csv(here::here("data/_summarized_data_files/", file = "fm_CT_ngs.csv"))

rm(df)

5 Air-sea CO2 flux

The CO2 flux across the sea surface was calculated according to Wanninkhof (2014).

df_1 <- read_csv(here::here("data/_summarized_data_files/", file = "fm_CT_ngs.csv"))
df_2 <- read_csv(here::here("data/_summarized_data_files/", file = "gt_windspeed_ngs.csv"))

df_2 <- df_2 %>% 
  mutate(date = as.Date(date_time)) %>% 
  select(date, U_10) %>% 
  group_by(date) %>% 
  summarise_all("mean") %>% 
  ungroup()

df <- full_join(df_1, df_2, by = "date") %>% 
  arrange(date)

rm(df_1,df_2)

df <- df %>% 
  mutate(year = year(date),
         pCO2_int = na.approx(pCO2, na.rm = FALSE),                  #na.approx: replacing NA with interpolated values
         SST_int = na.approx(SST, na.rm = FALSE)) %>% 
  filter(!is.na(pCO2_int))

#Calculation of the Schmidt number as a funktion of temperature according to Wanninkhof (2014)
Sc_W14 <- function(tem) {
  2116.8 - 136.25 * tem + 4.7353 * tem^2 - 0.092307 * tem^3 + 0.0007555 * tem^4
}

Sc_W14(20)

# calculate flux F [mol m–2 d–1]
df <- df %>%
  mutate(pCO2_air = 400 - 2*(2015-year),
         dpCO2 = pCO2_int - pCO2_air,
         dCO2  = dpCO2 * K0(S=pull(fm_sss_ngs_monthlymean), T=SST_int),
         k     = 0.251 * U_10^2 * (Sc_W14(SST_int)/660)^(-0.5),
         flux_daily = k*dCO2*1e-5*24)


df %>% 
   write_csv(here::here("data/_merged_data_files/", file = paste("gt_fm_flux_ngs.csv")))

rm(df, Sc_W14)

6 Time series CT, MLD, SST, windspeed, and air-sea fluxes

# read CT and flux data
gt_fm_flux_ngs <- read_csv(here::here("data/_merged_data_files/", file = "gt_fm_flux_ngs.csv"))

gt_fm_flux_ngs <- gt_fm_flux_ngs %>% 
  mutate(date = as.Date(date))

ts_xts_CT <- xts(cbind(gt_fm_flux_ngs$CT, gt_fm_flux_ngs$CT_equi), order.by = gt_fm_flux_ngs$date)
names(ts_xts_CT) <- c("CT", "CT_equi")

ts_xts_SST <- xts(gt_fm_flux_ngs$SST, order.by = gt_fm_flux_ngs$date)
names(ts_xts_SST) <- "SST"

ts_xts_windspeed <- xts(gt_fm_flux_ngs$U_10, order.by = gt_fm_flux_ngs$date)
names(ts_xts_windspeed) <- "Windspeed"

ts_xts_flux <- xts(gt_fm_flux_ngs$flux_daily, order.by = gt_fm_flux_ngs$date)
names(ts_xts_flux) <- "Daily Flux"


# read MLD data
gt_mld_fm_pco2_ngs <-
  read_csv(here::here("data/_merged_data_files/", file = "gt_mld_fm_pco2_ngs.csv"))

gt_mld_fm_pco2_ngs <- gt_mld_fm_pco2_ngs %>% 
  mutate(date = as.Date(date))

ts_xts_mld5 <- xts(gt_mld_fm_pco2_ngs$value_mld5, order.by = gt_mld_fm_pco2_ngs$date)
names(ts_xts_mld5) <- "mld_age_5"

ts_xts_CT %>% 
  dygraph(group = "Fluxes") %>% 
  dyRangeSelector(dateWindow = c("2014-01-01", "2016-12-31")) %>% 
  dySeries("CT") %>% 
  dyAxis("y", label = "CT") %>% 
  dyOptions(drawPoints = TRUE, pointSize = 1.5, connectSeparatedPoints=TRUE, strokeWidth=0.5,
            drawAxesAtZero=TRUE)
ts_xts_SST %>% 
  dygraph(group = "Fluxes") %>% 
  dyRangeSelector(dateWindow = c("2014-01-01", "2016-12-31")) %>% 
  dySeries("SST") %>% 
  dyAxis("y", label = "SST") %>% 
  dyOptions(drawPoints = TRUE, pointSize = 1.5, connectSeparatedPoints=TRUE, strokeWidth=0.5,
            drawAxesAtZero=TRUE)
ts_xts_mld5 %>% 
  dygraph(group = "Fluxes") %>% 
  dyRangeSelector(dateWindow = c("2014-01-01", "2016-12-31")) %>% 
  dySeries("mld_age_5") %>% 
  dyAxis("y", label = "mld_age_5") %>% 
  dyOptions(drawPoints = TRUE, pointSize = 1.5, connectSeparatedPoints=TRUE, strokeWidth=0.5,
            drawAxesAtZero=TRUE)
ts_xts_windspeed %>% 
  dygraph(group = "Fluxes") %>% 
  dyRangeSelector(dateWindow = c("2014-01-01", "2016-12-31")) %>% 
  dySeries("Windspeed") %>% 
  dyAxis("y", label = "Windspeed [m/s]") %>% 
  dyOptions(drawPoints = TRUE, pointSize = 1.5, connectSeparatedPoints=TRUE, strokeWidth=0.5,
            drawAxesAtZero=TRUE)
ts_xts_flux %>% 
  dygraph(group = "Fluxes") %>% 
  dyRangeSelector(dateWindow = c("2014-01-01", "2016-12-31")) %>% 
  dySeries("Daily Flux") %>% 
  dyAxis("y", label = "Daily Flux") %>% 
  dyOptions(drawPoints = TRUE, pointSize = 1.5, connectSeparatedPoints=TRUE, strokeWidth=0.5)
rm(gt_fm_flux_ngs, gt_mld_fm_pco2_ngs,
   ts_xts_CT, ts_xts_flux, ts_xts_mld5, ts_xts_SST, ts_xts_windspeed)

7 Identification of continous deployment periods

# time

time_low <- 03 # 03 as month March
time_high <- 09 # 09 as month September

deployment_gap <- 7
  • The maximum allowed gap was defined as 7 day.
df <- 
   read_csv(here::here("data/_summarized_data_files/", file = "fm_CT_ngs.csv"))

df <- df %>% 
  mutate (month = month(date),
          year = year(date)) %>% 
  filter (month >= time_low & month <= time_high) %>% 
  group_by(year) %>% 
  mutate(deployment = 
           as.factor(cumsum(c(TRUE,diff(date)>= deployment_gap)))) %>% # deployment +1, when data gap > 7 days
  ungroup()

df %>% 
  ggplot(aes( x = as.Date(yday(date)), y = year, color = deployment))+
  geom_point()+
  scale_y_reverse(breaks = seq(2000,2030,1))+
  scale_x_date(date_minor_breaks = "week",
               date_labels = "%b")+
  scale_color_brewer(palette = "Set1")+
  theme(axis.title.x = element_blank())

df %>% 
  write_csv(here::here("data/_summarized_data_files/", file="fm_CT_ngs_deployments.csv"))

8 Identification of primary production periods (PPP)

#criteria
decrease_start <- 20
timespan_start <- 7 #in days

decrease_end <- 20
timespan_end <- 7 #in days

The following criteria are implemented in the following to find periods of primary production:

  • CT is lower than at equilibrium with the atmosphere
  • period must be within one deployment
  • starts at a day followed by 7 days in which CT decreased at least by 20
  • ends at day where the CT drop was below 20 for the previous 7

PPPs are numbered.

# databasis

df <- 
   read_csv(here::here("data/_summarized_data_files/", file = "fm_CT_ngs_deployments.csv"))

# identification

#ppp identified per year, per deployment, only when CT < CT_equi


df_ppp <- df %>% 
  filter(CT < CT_equi)

years <- (unique(df_ppp$year))

# first of three loops, loops through each observatio year
# we get the number of deployments within this year for further analysis
for (n in years) {

  a <- 1
  
  deployment_year <- df_ppp %>% 
    filter(year == n) 
  
  deployment_values <- unique(deployment_year$deployment)
    
  start <- "stop"
  end <- "stop"
  
  # second of three loops, loops through each deployment within on year
  for (d in deployment_values){
   
    a <- a+1
    
    df_ppp_temp <- df_ppp %>% 
      filter(year == n  , deployment == d) %>% 
      mutate(ppp = NA)
    
    # third of three loops, within on deployment of year n, we check ppp criteria for every row
    for (x in 1:nrow(df_ppp_temp)){
      
    if (start == "stop" & end == "stop" & is.na(df_ppp_temp$ppp[x]) == TRUE){a <- a +1 
    } else {a <- a}
      
    ##start criteria
    # define subdataset looking forward "timespan_start" days
    lag_start <- df_ppp_temp %>% 
    filter(date >= date[x], date <= (date[x]+ duration(timespan_start, 'days')))
    
    roll_index <- which.min(lag_start$CT)  #Minimum CT-value in 7 day forward
    roll_value <- lag_start$CT[roll_index] # get exact minimum CT value within subdataset 
    
    # we only proceed, if there is a minimum CT value
    if (is_empty(roll_value)== FALSE){
    
    # get index of exact CT value in whole dataset 
    roll_index_df <- df_ppp_temp %>%
    mutate(row_no = row_number()) %>%
    filter(CT == roll_value) %>%
    select(row_no) %>% 
    as.numeric()
    
    # second if-condition for start criteria; is CT value of current loop date x more than "decrease_start" higher tha minimum CT in 7 day forward
    
    if (df_ppp_temp$CT[x]-roll_value >= decrease_start) {
    
    start <- "go" #condition for end-criteria; only TRUE when there was the necessary decrease
    
    df_ppp_temp$ppp[x:roll_index_df] <- as.numeric(a)
    
    } else{start <- "stop"} # end of l. 566; if CT >= decrease_start
    
    rm(roll_index_df)
    
    } else {} # end of l.555 ;if we don't have a roll_value or the criterion of decrease is not met start is set FALSE, so that end criteria don't kick in without a start
      
    
    ##end criteria
    
    #was there a start? 
    if (start == "go" | start == "stop" & end == "go"| start == "go" & end == "go"){
    
    lag_end <- df_ppp_temp %>% 
    filter(date < date[x], date >= (date[x]- duration(timespan_end, 'days')))

    roll_index <- which.max(lag_end$CT) #in contrast to start we search for the maximum CT value here when looking backwards
    roll_value <- lag_end$CT[roll_index]
    
    if (is_empty(roll_value) == FALSE){ #at the start of the loop we can't look backwards
      
    roll_index_df <- df_ppp_temp %>%
    mutate(row_no = row_number()) %>%
    filter(CT == roll_value) %>%
    select(row_no) %>% 
    as.numeric()
  
    if (roll_value-df_ppp_temp$CT[x] >= decrease_end){
    
    df_ppp_temp$ppp[x] = as.numeric(a) 
    end <- "go"
    
    rm(roll_index_df)
    
    } else{end <- "stop"} # end of l.598; if CT >= decrease_end
    
    } else {}             # end of l.590; if roll_value = empty; if we can't look backwards, we jump to the next loop iteration
    
    rm(lag_end)
    
    } else {end <- "stop"
      start < "stop"}   #end l. 582; start == TRUE condition
    
    rm(roll_index, roll_value)
    
    } #end  loop through df_ppp_temp
    
    if (exists("fm_ppp", inherits = FALSE)){
        fm_ppp <- bind_rows(fm_ppp, df_ppp_temp)
    }else{fm_ppp <- df_ppp_temp}
    
    rm(df_ppp_temp)
    
  }#end of loop through deployments
  
  rm(deployment_year, deployment_values)
  
}#end of loop through years


fm_ppp_na <- fm_ppp %>% 
  drop_na()

# enumeration of ppps

#ppps continous numerations
fm_ppp_final <- fm_ppp_na %>% 
  group_by(year) %>%
  mutate(ppp_2 = as.factor(cumsum(c(TRUE,abs(diff(ppp))>=1)))) %>% 
  ungroup()

ggplot()+
  geom_point(data = df, aes(as.Date(yday(date)), year), col="grey")+
  geom_point(data = fm_ppp_final, aes(as.Date(yday(date)), year, col = as.factor(ppp_2)))+
  scale_y_reverse(breaks = seq(2000,2030,1))+
  scale_x_date(date_minor_breaks = "week",
               date_labels = "%b")+
  scale_color_brewer(palette = "Set1", name="PPP")+
  theme(axis.title.x = element_blank())

fm_ppp_final %>% 
  write_csv(here::here("data/_summarized_data_files/", file = "fm_ppp_ngs.csv"))

8.1 CT yearly time series

ggplot()+
  geom_point(data = df, aes(as.Date(yday(date)), CT), color = "grey")+
  geom_point(data = fm_ppp_final, aes(as.Date(yday(date)), CT, color = as.factor(ppp_2)))+
  scale_y_continuous(breaks = seq(1000,2000,100),
                     minor_breaks = seq(1000,2000,20))+
  scale_x_date(date_minor_breaks = "week",
               date_labels = "%b")+
  scale_color_brewer(palette = "Set1", name="PPP")+
  theme(axis.title.x = element_blank(),
        legend.position = "bottom")+
  facet_grid(year~.)

8.2 SST yearly time series

ggplot()+
  geom_point(data = df, aes(as.Date(yday(date)), SST), color = "grey")+
  geom_point(data = fm_ppp_final, aes(as.Date(yday(date)), SST, color = as.factor(ppp_2)))+
  scale_x_date(date_minor_breaks = "week",
               date_labels = "%b")+
  scale_color_brewer(palette = "Set1", name="PPP")+
  theme(axis.title.x = element_blank(),
        legend.position = "bottom")+
  facet_grid(year~.)

9 Tasks / open questions

  • check drop_na() before CT calculation, because thise removes quite a lot data points where only SST is missing.
    • drop_na() before pivot_wider: leaves 2016 observations
    • drop_na() after pivot_wider or second drop_na() just before CT calculations: leaves 1982 observations, we loose timeperiods without SST value from: “2005-8-25” to “2005-9-24” and “2006-01-29” to “2006-03-04”
    • still we need to keep drop_na() after pivot_wider for now, because CT calculation does not accept NA data in any column

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_Germany.1252  LC_CTYPE=English_Germany.1252   
[3] LC_MONETARY=English_Germany.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Germany.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] seacarb_3.2.13   oce_1.2-0        gsw_1.0-5        testthat_2.3.2  
 [5] here_0.1         xts_0.12-0       zoo_1.8-7        dygraphs_1.1.1.6
 [9] geosphere_1.5-10 lubridate_1.7.4  vroom_1.2.0      ncdf4_1.17      
[13] forcats_0.5.0    stringr_1.4.0    dplyr_0.8.5      purrr_0.3.3     
[17] readr_1.3.1      tidyr_1.0.2      tibble_3.0.0     ggplot2_3.3.0   
[21] tidyverse_1.3.0  workflowr_1.6.1 

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4         whisker_0.4        knitr_1.28         xml2_1.3.0        
 [5] magrittr_1.5       hms_0.5.3          rvest_0.3.5        tidyselect_1.0.0  
 [9] bit_1.1-15.2       colorspace_1.4-1   lattice_0.20-41    R6_2.4.1          
[13] rlang_0.4.5        fansi_0.4.1        broom_0.5.5        xfun_0.12         
[17] dbplyr_1.4.2       modelr_0.1.6       withr_2.1.2        git2r_0.26.1      
[21] ellipsis_0.3.0     htmltools_0.4.0    assertthat_0.2.1   bit64_0.9-7       
[25] rprojroot_1.3-2    digest_0.6.25      lifecycle_0.2.0    haven_2.2.0       
[29] rmarkdown_2.1      sp_1.4-1           compiler_3.6.3     cellranger_1.1.0  
[33] pillar_1.4.3       scales_1.1.0       backports_1.1.5    generics_0.0.2    
[37] jsonlite_1.6.1     httpuv_1.5.2       pkgconfig_2.0.3    rstudioapi_0.11   
[41] munsell_0.5.0      httr_1.4.1         tools_3.6.3        grid_3.6.3        
[45] nlme_3.1-145       gtable_0.3.0       utf8_1.1.4         DBI_1.1.0         
[49] cli_2.0.2          readxl_1.3.1       yaml_2.2.1         crayon_1.3.4      
[53] farver_2.0.3       RColorBrewer_1.1-2 later_1.0.0        promises_1.1.0    
[57] htmlwidgets_1.5.1  fs_1.4.0           vctrs_0.2.4        glue_1.3.2        
[61] evaluate_0.14      labeling_0.3       reprex_0.3.0       stringi_1.4.6