Last updated: 2022-11-14

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 40f357d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/presentation/
    Ignored:    output/publication/

Untracked files:
    Untracked:  code/results_publication_backup_incl_ensemble_uncertainty_20221111.Rmd

Unstaged changes:
    Deleted:    analysis/MLR_target_budgets.Rmd
    Deleted:    analysis/MLR_target_column_inventories.Rmd
    Deleted:    analysis/MLR_target_zonal_sections.Rmd
    Modified:   analysis/_site.yml
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/gaps_filter_budgets.Rmd) and HTML (docs/gaps_filter_budgets.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cc337dd jens-daniel-mueller 2022-11-11 Build site.
html ec60f68 jens-daniel-mueller 2022-11-07 Build site.
html e99640e jens-daniel-mueller 2022-07-29 Build site.
html d5765c9 jens-daniel-mueller 2022-07-17 Build site.
html 08c00b4 jens-daniel-mueller 2022-07-16 Build site.
html 692c937 jens-daniel-mueller 2022-07-16 Build site.
html 1aabfea jens-daniel-mueller 2022-07-12 Build site.
Rmd 567c3ed jens-daniel-mueller 2022-07-12 revised bias decomposition
html b44c72a jens-daniel-mueller 2022-07-03 Build site.
html 6e173bf jens-daniel-mueller 2022-06-30 updated regional budget plots
html a13a7cf jens-daniel-mueller 2022-06-28 Build site.
html b52b159 jens-daniel-mueller 2022-06-27 Build site.
html cdabe91 jens-daniel-mueller 2022-06-27 Build site.
html 09b0780 jens-daniel-mueller 2022-05-24 Build site.
html 25da2fb jens-daniel-mueller 2022-05-24 Build site.
html e09320d jens-daniel-mueller 2022-04-12 Build site.
html 8dca96a jens-daniel-mueller 2022-04-12 Build site.
html acad2e2 jens-daniel-mueller 2022-04-09 Build site.
html c3a6238 jens-daniel-mueller 2022-03-08 Build site.
html de557de jens-daniel-mueller 2022-01-28 Build site.
html 9753eb8 jens-daniel-mueller 2022-01-26 Build site.
html f347cd7 jens-daniel-mueller 2022-01-18 Build site.
html 513630f jens-daniel-mueller 2022-01-18 Build site.
html d7dfc7c jens-daniel-mueller 2022-01-18 Build site.
html 3b07c04 jens-daniel-mueller 2022-01-12 Build site.
Rmd 53dee50 jens-daniel-mueller 2022-01-12 rebuild with correct config
html 269809e jens-daniel-mueller 2022-01-12 Build site.
Rmd 0e16fb3 jens-daniel-mueller 2022-01-12 rebuild without any gap filter or flagging exceptions
html 1696b98 jens-daniel-mueller 2022-01-11 Build site.
html 570e738 jens-daniel-mueller 2022-01-10 Build site.
html 9bf6789 jens-daniel-mueller 2022-01-10 Build site.
html b10afbc jens-daniel-mueller 2022-01-05 Build site.
html f0c828a jens-daniel-mueller 2021-12-22 Build site.
html 316ea5f jens-daniel-mueller 2021-12-09 Build site.
html 9c72ef3 jens-daniel-mueller 2021-12-08 Build site.
html f4250b0 jens-daniel-mueller 2021-12-08 Build site.
html bd4091f jens-daniel-mueller 2021-12-04 Build site.
html ecbdffe jens-daniel-mueller 2021-12-03 Build site.
Rmd ade2bab jens-daniel-mueller 2021-12-03 revised gap filling analysis
html 7e0a36b jens-daniel-mueller 2021-11-21 Build site.
html e505a4b jens-daniel-mueller 2021-11-09 Build site.
html 66ec048 jens-daniel-mueller 2021-11-04 Build site.
Rmd 3eaddfc jens-daniel-mueller 2021-11-04 compared G19 and this study directly
html f7c3da2 jens-daniel-mueller 2021-11-03 Build site.
html e534f51 jens-daniel-mueller 2021-11-02 Build site.
html 57cfc36 jens-daniel-mueller 2021-11-01 Build site.
html 4331a22 jens-daniel-mueller 2021-10-29 Build site.
html ae5ae64 jens-daniel-mueller 2021-10-26 Build site.
html 581baa0 jens-daniel-mueller 2021-10-07 Build site.
html a7af62f jens-daniel-mueller 2021-10-06 Build site.
html f9b4f93 jens-daniel-mueller 2021-10-05 Build site.
Rmd 066f9b0 jens-daniel-mueller 2021-10-05 add no gap filling and flag filter analysis

version_id_pattern <- "g"
config <- "MLR_basins"

1 Read files

print(version_id_pattern)
[1] "g"
# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "g"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "g"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "g"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

# print(Version_IDs)

1.1 Global

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_global <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global.csv",
                   sep = ""))
  
  dcant_budget_global_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_global_mod_truth.csv",
      sep = ""
    ))
  
  dcant_budget_global_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global_bias.csv",
                   sep = ""))
  
  lm_best_predictor_counts <-
    read_csv(paste(path_version_data,
                   "lm_best_predictor_counts.csv",
                   sep = ""))
  
  lm_best_dcant <-
    read_csv(paste(path_version_data,
                   "lm_best_dcant.csv",
                   sep = ""))
  
  dcant_budget_global <- bind_rows(dcant_budget_global,
                                      dcant_budget_global_mod_truth)
  
  dcant_budget_global <- dcant_budget_global %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_global_bias <- dcant_budget_global_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_predictor_counts <- lm_best_predictor_counts %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_dcant <- lm_best_dcant %>%
    mutate(Version_ID = i_Version_IDs)

  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins := str_c(params_local$MLR_basins, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_budget_global_all")) {
    dcant_budget_global_all <-
      bind_rows(dcant_budget_global_all, dcant_budget_global)
  }
  
  if (!exists("dcant_budget_global_all")) {
    dcant_budget_global_all <- dcant_budget_global
  }
  
  if (exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <-
      bind_rows(dcant_budget_global_bias_all,
                dcant_budget_global_bias)
  }

  if (!exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <- dcant_budget_global_bias
  }
  
    
  if (exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <-
      bind_rows(lm_best_predictor_counts_all, lm_best_predictor_counts)
  }
  
  if (!exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <- lm_best_predictor_counts
  }
    
  if (exists("lm_best_dcant_all")) {
    lm_best_dcant_all <-
      bind_rows(lm_best_dcant_all, lm_best_dcant)
  }
  
  if (!exists("lm_best_dcant_all")) {
    lm_best_dcant_all <- lm_best_dcant
  }
  
  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}

rm(
  dcant_budget_global,
  dcant_budget_global_bias,
  dcant_budget_global_mod_truth,
  lm_best_predictor_counts,
  lm_best_dcant,
  params_local,
  tref
)

1.2 Basins

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_AIP <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP.csv",
                   sep = ""))
  
  dcant_budget_basin_AIP_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_AIP_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_AIP <- bind_rows(dcant_budget_basin_AIP,
                                      dcant_budget_basin_AIP_mod_truth)
  
  dcant_budget_basin_AIP_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_bias.csv",
                   sep = ""))
  
  dcant_slab_budget_bias <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget_bias.csv"))

  dcant_slab_budget <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget.csv"))

  dcant_budget_basin_AIP <- dcant_budget_basin_AIP %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_bias <- dcant_budget_basin_AIP_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget <- dcant_slab_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget_bias <- dcant_slab_budget_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <-
      bind_rows(dcant_budget_basin_AIP_all, dcant_budget_basin_AIP)
  }
  
  if (!exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP
  }
  
  if (exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <-
      bind_rows(dcant_budget_basin_AIP_bias_all,
                dcant_budget_basin_AIP_bias)
  }
  
  if (!exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias
  }
  
  if (exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <-
      bind_rows(dcant_slab_budget_all, dcant_slab_budget)
  }
  
  if (!exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <- dcant_slab_budget
  }
  
  if (exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <-
      bind_rows(dcant_slab_budget_bias_all,
                dcant_slab_budget_bias)
  }
  
  if (!exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <- dcant_slab_budget_bias
  }
  
}

rm(
  dcant_budget_basin_AIP,
  dcant_budget_basin_AIP_bias,
  dcant_budget_basin_AIP_mod_truth,
  dcant_slab_budget,
  dcant_slab_budget_bias
)

1.3 Basins hemisphere

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_MLR <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_MLR.csv",
                   sep = ""))
  
  dcant_budget_basin_MLR_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_MLR_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_MLR <- bind_rows(dcant_budget_basin_MLR,
                                      dcant_budget_basin_MLR_mod_truth)
  

  dcant_budget_basin_MLR <- dcant_budget_basin_MLR %>%
    mutate(Version_ID = i_Version_IDs)

  if (exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <-
      bind_rows(dcant_budget_basin_MLR_all, dcant_budget_basin_MLR)
  }
  
  if (!exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR
  }

  
}

rm(
  dcant_budget_basin_MLR,
  dcant_budget_basin_MLR_mod_truth
)

1.4 Steady state

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_obs_budget <-
    read_csv(paste0(path_version_data,
                    "anom_dcant_obs_budget.csv"))
  
  dcant_obs_budget <- dcant_obs_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <-
      bind_rows(dcant_obs_budget_all, dcant_obs_budget)
  }
  
  if (!exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <- dcant_obs_budget
  }
  
}


rm(dcant_obs_budget)

1.5 Atm CO2

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")

params_local_all <- params_local_all %>%
  mutate(MLR_predictors = str_remove_all(all_predictors,
                                         MLR_predictors))
dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_global_all_depth <- dcant_budget_global_all

dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(estimate == "dcant") %>%
  select(-c(estimate))

dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_basin_AIP_all_depth <- dcant_budget_basin_AIP_all

dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(estimate == "dcant") %>% 
  select(-c(estimate))

dcant_budget_basin_AIP_bias_all_depth <- dcant_budget_basin_AIP_bias_all

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

# dcant_budget_basin_MLR_all_depth <- dcant_budget_basin_MLR_all

dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(estimate == "dcant") %>% 
#   select(-c(estimate))
# 
# dcant_budget_basin_MLR_bias_all_depth <- dcant_budget_basin_MLR_bias_all
# 
# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(inv_depth == params_global$inventory_depth_standard)

2 Bias thresholds

global_bias_rel_max <- 10
global_bias_rel_max
[1] 10
regional_bias_rel_max <- 20
regional_bias_rel_max
[1] 20

3 Individual cases

3.1 Global

3.1.1 Absoulte values

legend_title = expression(atop(Delta * C[ant],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

dcant_budget_global_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

3.1.2 Biases

dcant_budget_global_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(atop(Delta * C[ant] ~ bias,
                               (PgC)))) +
  geom_point() +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
p_global_bias <-
  dcant_budget_global_bias_all %>%
  ggplot() +
  geom_hline(yintercept = global_bias_rel_max * c(-1, 1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
  alpha = 0.7) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        axis.title.x = element_blank())

p_global_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
dcant_budget_global_bias_all %>%
  group_by(period) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
period dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 1.4623699 1.396667 8.290079 7.917611
1994 - 2014 1.7128169 2.552333 4.452576 6.634952
2004 - 2014 0.8663283 1.285500 4.159441 6.171980

3.2 Basins

3.2.1 Absoulte values

dcant_budget_basin_AIP_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin_AIP ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

3.2.2 Biases

dcant_budget_basin_AIP_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin_AIP ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin_AIP)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
p_regional_bias <- 
  dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

3.3 Slab budgets

3.3.1 Absolute values

dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  ggplot(aes(MLR_basins, dcant, fill = gamma_slab)) +
  geom_hline(yintercept = 0, col = "red") +
  geom_col() +
  scale_fill_scico_d(direction = -1) +
  facet_grid(basin_AIP ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, dcant, fill = gamma_slab)) +
      geom_hline(yintercept = 0) +
      geom_col() +
      scale_fill_scico_d(direction = -1) +
      labs(title = paste("data_source:", unique(.x$basin_AIP))) +
      facet_grid(gamma_slab ~ period)
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

3.3.2 Bias

dcant_slab_budget_bias_all %>%
  filter(period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_bias, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ MLR_basins) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
    )
[[1]]
Warning: Removed 40 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[2]]
Warning: Removed 24 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[3]]
Warning: Removed 108 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

3.3.3 Spread

dcant_slab_budget_all %>%
  filter(period != "1994 - 2014",
         data_source != "mod_truth") %>%
  group_by(data_source, basin_AIP, gamma_slab, period) %>%
  summarise(dcant_range = max(dcant) - min(dcant)) %>%
  ungroup() %>%
  group_split(basin_AIP) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_range, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ data_source) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
  )
`summarise()` has grouped output by 'data_source', 'basin_AIP', 'gamma_slab'.
You can override using the `.groups` argument.
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
269809e jens-daniel-mueller 2022-01-12

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
269809e jens-daniel-mueller 2022-01-12

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
269809e jens-daniel-mueller 2022-01-12

3.4 Basins hemisphere

3.4.1 Absoulte values

dcant_budget_basin_MLR_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
f347cd7 jens-daniel-mueller 2022-01-18

3.4.2 Biases

dcant_budget_basin_MLR_bias_all <-
  dcant_budget_basin_MLR_all %>%
  filter(data_source %in% c("mod", "mod_truth")) %>%
  pivot_wider(names_from = data_source,
              values_from = dcant) %>%
  mutate(dcant_bias = mod - mod_truth,
         dcant_bias_rel = 100*(mod - mod_truth)/mod_truth)
  
dcant_budget_basin_MLR_bias_all %>%   
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
p_regional_bias <- 
  dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
dcant_budget_basin_MLR_bias_all %>%
  group_by(period, basin) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'period'. You can override using the
`.groups` argument.
period basin dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 Indian 0.9977261 0.2198333 20.695418 4.559912
1994 - 2004 N_Atlantic 0.2349874 0.2005000 12.044462 10.276781
1994 - 2004 N_Pacific 0.1787092 0.4691667 6.579866 17.274178
1994 - 2004 S_Atlantic 0.2865469 0.0955000 11.461874 3.820000
1994 - 2004 S_Pacific 0.8011616 0.4116667 14.174833 7.283557
1994 - 2014 Indian 1.2941599 0.7306667 12.386676 6.993364
1994 - 2014 N_Atlantic 0.3465991 -0.0478333 8.067950 -1.113439
1994 - 2014 N_Pacific 0.2536877 0.5663333 4.345456 9.700811
1994 - 2014 S_Atlantic 0.3459918 0.4515000 6.541724 8.536585
1994 - 2014 S_Pacific 1.2831324 0.8516667 10.186015 6.760869
2004 - 2014 Indian 0.5375986 0.4635000 9.555610 8.238535
2004 - 2014 N_Atlantic 0.1797095 -0.1295000 7.663518 -5.522388
2004 - 2014 N_Pacific 0.2146098 0.1411667 6.874113 4.521674
2004 - 2014 S_Atlantic 0.2104428 0.4108333 7.545457 14.730489
2004 - 2014 S_Pacific 0.5028805 0.4000000 7.240900 5.759539

4 Ensemble

4.1 Global

dcant_budget_global_all_in <- dcant_budget_global_all %>% 
  filter(data_source %in% c("mod", "obs"))

dcant_budget_global_ensemble <- dcant_budget_global_all_in %>% 
  group_by(data_source, period, tref2) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'data_source', 'period'. You can override
using the `.groups` argument.

4.1.1 Mean

legend_title = expression(Delta * C[ant]~(PgC))

ggplot() +
  geom_col(data = dcant_budget_global_ensemble,
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
  geom_errorbar(
    data = dcant_budget_global_ensemble,
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  geom_point(
    data = dcant_budget_global_all,
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.2, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  labs(y = legend_title) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
f347cd7 jens-daniel-mueller 2022-01-18
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
p_global_dcant <- ggplot() +
  geom_col(data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
    geom_point(
    data = dcant_budget_global_all %>% 
             filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.1, height = 0)
  ) +
  geom_errorbar(
    data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

p_global_dcant_bias <-
p_global_dcant / p_global_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_global_dcant_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
f347cd7 jens-daniel-mueller 2022-01-18
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
# ggsave(plot = p_global_dcant_bias,
#        path = here::here("output/publication"),
#        filename = "Fig_global_dcant_budget.png",
#        height = 5,
#        width = 5)

rm(p_global_bias, p_global_dcant, p_global_dcant_bias)

4.1.2 Mean vs atm CO2

dcant_ensemble <- dcant_budget_global_ensemble %>% 
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  select(year = tref2, dcant_mean, dcant_sd)

tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)

tcant_ensemble <- full_join(dcant_ensemble, tcant_S04)
Joining, by = c("year", "dcant_mean", "dcant_sd")
tcant_ensemble <- left_join(tcant_ensemble, co2_atm)
Joining, by = "year"
co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)

tcant_ensemble <- full_join(tcant_ensemble, co2_atm_pi)
Joining, by = c("year", "dcant_mean", "dcant_sd", "pCO2")
tcant_ensemble <- tcant_ensemble %>% 
  arrange(year) %>% 
  mutate(tcant = cumsum(dcant_mean),
         tcant_sd = cumsum(dcant_sd))

tcant_ensemble %>% 
  ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
  geom_ribbon(fill = "grey80") +
  geom_point() +
  geom_line() +
  scale_x_continuous(breaks = seq(280, 400, 30),
                     sec.axis = dup_axis(labels =  c(1750, 1940, 1980, 2000, 2015),
                                         name = "Year")) +
  geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
  labs(x = expression(Atmospheric~pCO[2]~(µatm)),
       y = expression(Total~oceanic~C[ant]~(PgC)))

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
269809e jens-daniel-mueller 2022-01-12
# ggsave(path = "output/publication",
#        filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
#        height = 4,
#        width = 7)

4.1.3 Sum decades

dcant_budget_global_all_in_sum <-
  dcant_budget_global_all_in %>%
  filter(period != "1994 - 2014") %>%
  arrange(tref1) %>%
  group_by(data_source, MLR_basins) %>%
  mutate(dcant = dcant + lag(dcant)) %>% 
  ungroup() %>%
  drop_na() %>% 
  mutate(estimate = "sum")

dcant_budget_global_all_in_sum <-
  bind_rows(
    dcant_budget_global_all_in_sum,
    dcant_budget_global_all_in %>%
      filter(period == "1994 - 2014") %>%
      mutate(estimate = "direct")
  )

ggplot() +
  geom_point(
    data = dcant_budget_global_all_in_sum,
    aes(estimate, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

4.1.4 Mean bias

dcant_budget_global_ensemble_bias <- full_join(
  dcant_budget_global_ensemble %>%
    filter(data_source == "mod") %>% 
    select(period, dcant_mean, dcant_sd),
  dcant_budget_global_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_global_all$MLR_basins)[1]) %>% 
    select(period, dcant)
)
Joining, by = "period"
dcant_budget_global_ensemble_bias <- dcant_budget_global_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)

dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

4.1.5 Vertical patterns

4.1.5.1 Absoulte values

dcant_budget_global_all_depth %>%
  filter(data_source != "mod_truth") %>% 
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill=period)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ .) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

4.1.5.2 Biases

dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
rm(dcant_budget_global_all,
   dcant_budget_global_all_depth,
   dcant_budget_global_bias_all,
   dcant_budget_global_bias_all_depth,
   dcant_budget_global_ensemble,
   dcant_budget_global_ensemble_bias)

4.2 Basins

dcant_budget_basin_AIP_ensemble <- dcant_budget_basin_AIP_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(basin_AIP, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'basin_AIP', 'data_source'. You can override
using the `.groups` argument.

4.2.1 Mean

dcant_budget_basin_AIP_ensemble %>%
  ggplot(aes(period, dcant_mean, col=basin_AIP)) +
  geom_pointrange(aes(ymax = dcant_mean + dcant_sd,
                      ymin = dcant_mean - dcant_sd),
                  shape = 21) +
  facet_grid(. ~ data_source)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
p_regional_dcant <- ggplot() +
  geom_col(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(x = period,
        y = dcant_mean),
    fill = "darkgrey"
  ) +
  geom_point(
    data = dcant_budget_basin_AIP_all %>%
      filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    position = position_jitter(width = 0.1, height = 0),
    alpha = 0.7
  ) +
  geom_errorbar(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0, 35), expand = c(0, 0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP)

p_regional_dcant_bias <-
p_regional_dcant / p_regional_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_regional_dcant_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
f347cd7 jens-daniel-mueller 2022-01-18
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
66ec048 jens-daniel-mueller 2021-11-04
f9b4f93 jens-daniel-mueller 2021-10-05
# ggsave(plot = p_regional_dcant_bias,
#        path = "output/publication",
#        filename = "Fig_regional_dcant_budget.png",
#        height = 5,
#        width = 10)

rm(p_regional_bias, p_regional_dcant, p_regional_dcant_bias)

4.2.2 Mean bias

dcant_budget_basin_AIP_ensemble_bias <- full_join(
  dcant_budget_basin_AIP_ensemble %>%
    filter(data_source == "mod") %>% 
    select(basin_AIP, period, dcant_mean, dcant_sd),
  dcant_budget_basin_AIP_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_basin_AIP_all$MLR_basins)[1]) %>% 
    select(basin_AIP, period, dcant)
)
Joining, by = c("basin_AIP", "period")
dcant_budget_basin_AIP_ensemble_bias <- dcant_budget_basin_AIP_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)


dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
c3a6238 jens-daniel-mueller 2022-03-08
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

4.2.3 Vertical patterns

4.2.3.1 Absoulte values

dcant_budget_basin_AIP_all_depth %>%
  filter(data_source != "mod_truth") %>%
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill = basin_AIP)) +
      geom_vline(xintercept = 0) +
      geom_col() +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ period) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

4.2.3.2 Biases

dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05
dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

5 Steady state

dcant_obs_budget_all %>%
  group_by(inv_depth) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(estimate, dcant_pos, fill = basin_AIP)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(MLR_basins ~ period) +
      labs(title = paste("inventory depth:",unique(.x$inv_depth)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[4]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

[[5]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
cdabe91 jens-daniel-mueller 2022-06-27
3b07c04 jens-daniel-mueller 2022-01-12
269809e jens-daniel-mueller 2022-01-12
b10afbc jens-daniel-mueller 2022-01-05
f0c828a jens-daniel-mueller 2021-12-22
316ea5f jens-daniel-mueller 2021-12-09
9c72ef3 jens-daniel-mueller 2021-12-08
f4250b0 jens-daniel-mueller 2021-12-08
bd4091f jens-daniel-mueller 2021-12-04
ecbdffe jens-daniel-mueller 2021-12-03
f9b4f93 jens-daniel-mueller 2021-10-05

6 Predictor analysis

lm_best_predictor_counts_all <-
  full_join(lm_best_predictor_counts_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_predictor_counts_all <- lm_best_predictor_counts_all %>% 
  mutate(n_predictors_total = rowSums(across(aou:temp), na.rm = TRUE)/10)

lm_best_predictor_counts_all %>%
  ggplot(aes(x = MLR_basins, y = n_predictors_total)) +
  # ggdist::stat_halfeye(
  #   adjust = .5,
  #   width = .6,
  #   .width = 0,
  #   justification = -.2,
  #   point_colour = NA
  # ) +
  geom_boxplot(width = 0.5,
               outlier.shape = NA) +
  gghalves::geom_half_point(
    side = "l",
    range_scale = .4,
    alpha = .5,
    aes(col = gamma_slab)
  ) +
  scale_color_viridis_d() +
  facet_grid(basin ~ data_source)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18
lm_best_predictor_counts_all %>%
  pivot_longer(aou:temp,
               names_to = "predictor",
               values_to = "count") %>%
  group_split(predictor) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, count, color = gamma_slab)) +
      geom_jitter(alpha = 0.5) +
      scale_color_viridis_d() +
      labs(title = paste0("predictor:", unique(.x$predictor))) +
      coord_cartesian(ylim = c(0, 10)) +
      facet_grid(basin ~ data_source)
  )
[[1]]
Warning: Removed 2 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18

[[2]]
Warning: Removed 44 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18

[[3]]
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18

[[4]]
Warning: Removed 9 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18

[[5]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18

[[6]]
Warning: Removed 3 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18

[[7]]
Warning: Removed 2 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18
lm_best_dcant_all <-
  full_join(lm_best_dcant_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_dcant_all %>%
  count(basin, data_source, gamma_slab, MLR_basins, period) %>%
  ggplot(aes(MLR_basins, n)) +
  geom_jitter(height = 0, alpha = 0.3) +
  facet_grid(basin ~ data_source)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
b44c72a jens-daniel-mueller 2022-07-03
cdabe91 jens-daniel-mueller 2022-06-27
f347cd7 jens-daniel-mueller 2022-01-18
513630f jens-daniel-mueller 2022-01-18

7 Drift and bias

dcant_budget_global_all_dissic %>%
  filter(estimate == "dcant") %>%
  ggplot(aes(inv_depth, value, col = !!sym(config))) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  geom_point() +
  geom_path() +
  labs(y = "DIC change (PgC)") +
  facet_grid(data_source ~ period, scales = "free_y")

Version Author Date
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  filter(estimate == "dcant") %>%
  select(inv_depth, dcant_bias, contribution, !!sym(config), period) %>%
  pivot_wider(names_from = contribution,
              values_from = dcant_bias)

dcant_budget_global_bias_all_decomposition <-
  full_join(
    dcant_budget_global_bias_all_decomposition,
    dcant_budget_global_bias_all_depth %>%
      select(inv_depth, !!sym(config), period, mod_truth)
  )
Joining, by = c("inv_depth", "MLR_basins", "period")
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `delta C* - mod_truth`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* prediction error`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset`,
    `C* prediction error` + `delta C* - mod_truth`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* drift`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset` - `C* drift`,
    `C* prediction error`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset` - `C* drift`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  mutate(
    `dcant offset rel` = 100 * `dcant offset` / mod_truth,
    `dcant offset rel corr` = 100 * (`dcant offset` - `C* drift`) / mod_truth,
    `C* prediction error rel` = 100 * (`C* prediction error`) / mod_truth
  )

dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset rel`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset rel corr`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
d5765c9 jens-daniel-mueller 2022-07-17
1aabfea jens-daniel-mueller 2022-07-12
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  pivot_longer(-c(inv_depth:period),
               names_to = "estimate",
               values_to = "value")


dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth'. You can override using the
`.groups` argument.
inv_depth estimate mean sd
100 C* drift 0.2033333 0.0740032
100 C* prediction error -0.2393333 0.3401014
100 C* prediction error rel -4.4153483 8.1142990
100 dcant offset 0.2468333 0.1582806
100 dcant offset rel 5.5372104 4.2463854
100 dcant offset rel corr 1.2451436 3.9621830
100 delta C* - mod_truth -0.3946667 0.2164184
100 mod_truth 4.7563333 1.7425592
500 C* drift 1.3446667 0.4893907
500 C* prediction error -1.2952222 0.9603342
500 C* prediction error rel -7.3927199 4.9897061
500 dcant offset 0.3857778 0.7326238
500 dcant offset rel 2.5613516 5.0780565
500 dcant offset rel corr -5.4050140 4.6308913
500 delta C* - mod_truth 0.3773333 0.1374833
500 mod_truth 16.9600000 6.2242462
1000 C* drift 3.1486667 1.1458415
1000 C* prediction error -2.9658889 1.6097098
1000 C* prediction error rel -12.9309922 5.2246033
1000 dcant offset 0.4245556 1.0755111
1000 dcant offset rel 2.0326474 5.1976306
1000 dcant offset rel corr -11.8764223 4.8139167
1000 delta C* - mod_truth 2.0866667 0.7598902
1000 mod_truth 22.7516667 8.3557301
3000 C* drift 3.9900000 1.4521475
3000 C* prediction error -2.1771111 1.4920166
3000 C* prediction error rel -8.4792959 5.2085990
3000 dcant offset 1.7448333 1.4352606
3000 dcant offset rel 6.9081812 5.6311765
3000 dcant offset rel corr -8.7359634 5.6104634
3000 delta C* - mod_truth 2.6026667 0.9469936
3000 mod_truth 25.6453333 9.4254881
10000 C* drift 3.3760000 1.2289476
10000 C* prediction error -1.0326667 1.8383415
10000 C* prediction error rel -3.9143573 7.3203530
10000 dcant offset 2.0411667 2.0215797
10000 dcant offset rel 7.9697268 7.9500201
10000 dcant offset rel corr -5.0691493 7.9168272
10000 delta C* - mod_truth 1.7546667 0.6384472
10000 mod_truth 26.0420000 9.5725748
dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate, period) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth', 'estimate'. You can override
using the `.groups` argument.
inv_depth estimate period mean sd
100 C* drift 1994 - 2004 0.1550000 0.0000000
100 C* drift 1994 - 2014 0.3050000 0.0000000
100 C* drift 2004 - 2014 0.1500000 0.0000000
100 C* prediction error 1994 - 2004 0.1158333 0.2040700
100 C* prediction error 1994 - 2014 -0.4196667 0.2337757
100 C* prediction error 2004 - 2014 -0.4141667 0.2643909
100 C* prediction error rel 1994 - 2004 3.4900070 6.1485388
100 C* prediction error rel 1994 - 2014 -5.8826278 3.2769228
100 C* prediction error rel 2004 - 2014 -10.8534242 6.9284836
100 dcant offset 1994 - 2004 0.3498333 0.0589251
100 dcant offset 1994 - 2014 0.3418333 0.0626432
100 dcant offset 2004 - 2014 0.0488333 0.0847193
100 dcant offset rel 1994 - 2004 10.5403234 1.7753870
100 dcant offset rel 1994 - 2014 4.7916083 0.8780932
100 dcant offset rel 2004 - 2014 1.2796995 2.2201085
100 dcant offset rel corr 1994 - 2004 5.8702420 1.7753870
100 dcant offset rel corr 1994 - 2014 0.5163069 0.8780932
100 dcant offset rel corr 2004 - 2014 -2.6511181 2.2201085
100 delta C* - mod_truth 1994 - 2004 -0.4900000 0.0000000
100 delta C* - mod_truth 1994 - 2014 -0.5910000 0.0000000
100 delta C* - mod_truth 2004 - 2014 -0.1030000 0.0000000
100 mod_truth 1994 - 2004 3.3190000 0.0000000
100 mod_truth 1994 - 2014 7.1340000 0.0000000
100 mod_truth 2004 - 2014 3.8160000 0.0000000
500 C* drift 1994 - 2004 1.0250000 0.0000000
500 C* drift 1994 - 2014 2.0170000 0.0000000
500 C* drift 2004 - 2014 0.9920000 0.0000000
500 C* prediction error 1994 - 2004 -0.4975000 0.6386714
500 C* prediction error 1994 - 2014 -2.0165000 0.9823093
500 C* prediction error 2004 - 2014 -1.3716667 0.6065099
500 C* prediction error rel 1994 - 2004 -4.2358450 5.4378149
500 C* prediction error rel 1994 - 2014 -7.9264937 3.8612786
500 C* prediction error rel 2004 - 2014 -10.0158209 4.4286959
500 dcant offset 1994 - 2004 0.8561667 0.5043937
500 dcant offset 1994 - 2014 0.5353333 0.7843639
500 dcant offset 2004 - 2014 -0.2341667 0.4491233
500 dcant offset rel 1994 - 2004 7.2896268 4.2945395
500 dcant offset rel 1994 - 2014 2.1042977 3.0831913
500 dcant offset rel 2004 - 2014 -1.7098698 3.2794694
500 dcant offset rel corr 1994 - 2004 -1.4374911 4.2945395
500 dcant offset rel corr 1994 - 2014 -5.8241614 3.0831913
500 dcant offset rel corr 2004 - 2014 -8.9533893 3.2794694
500 delta C* - mod_truth 1994 - 2004 0.2920000 0.0000000
500 delta C* - mod_truth 1994 - 2014 0.5660000 0.0000000
500 delta C* - mod_truth 2004 - 2014 0.2740000 0.0000000
500 mod_truth 1994 - 2004 11.7450000 0.0000000
500 mod_truth 1994 - 2014 25.4400000 0.0000000
500 mod_truth 2004 - 2014 13.6950000 0.0000000
1000 C* drift 1994 - 2004 2.3950000 0.0000000
1000 C* drift 1994 - 2014 4.7230000 0.0000000
1000 C* drift 2004 - 2014 2.3280000 0.0000000
1000 C* prediction error 1994 - 2004 -1.8541667 1.2167319
1000 C* prediction error 1994 - 2014 -4.5021667 1.5806612
1000 C* prediction error 2004 - 2014 -2.5413333 0.5472190
1000 C* prediction error rel 1994 - 2004 -11.8099788 7.7498848
1000 C* prediction error rel 1994 - 2014 -13.1923892 4.6317027
1000 C* prediction error rel 2004 - 2014 -13.7906085 2.9694977
1000 dcant offset 1994 - 2004 0.7648333 1.1406881
1000 dcant offset 1994 - 2014 0.6148333 1.4021001
1000 dcant offset 2004 - 2014 -0.1060000 0.3816118
1000 dcant offset rel 1994 - 2004 4.8715499 7.2655294
1000 dcant offset rel 1994 - 2014 1.8016038 4.1084773
1000 dcant offset rel 2004 - 2014 -0.5752116 2.0708262
1000 dcant offset rel corr 1994 - 2004 -10.3832272 7.2655294
1000 dcant offset rel corr 1994 - 2014 -12.0378781 4.1084773
1000 dcant offset rel corr 2004 - 2014 -13.2081615 2.0708262
1000 delta C* - mod_truth 1994 - 2004 1.5570000 0.0000000
1000 delta C* - mod_truth 1994 - 2014 3.1310000 0.0000000
1000 delta C* - mod_truth 2004 - 2014 1.5720000 0.0000000
1000 mod_truth 1994 - 2004 15.7000000 0.0000000
1000 mod_truth 1994 - 2014 34.1270000 0.0000000
1000 mod_truth 2004 - 2014 18.4280000 0.0000000
3000 C* drift 1994 - 2004 3.0410000 0.0000000
3000 C* drift 1994 - 2014 5.9850000 0.0000000
3000 C* drift 2004 - 2014 2.9440000 0.0000000
3000 C* prediction error 1994 - 2004 -1.6451667 1.3246916
3000 C* prediction error 1994 - 2014 -3.3375000 1.6505759
3000 C* prediction error 2004 - 2014 -1.5486667 0.8125798
3000 C* prediction error rel 1994 - 2004 -9.3263416 7.5095894
3000 C* prediction error rel 1994 - 2014 -8.6760424 4.2907764
3000 C* prediction error rel 2004 - 2014 -7.4355035 3.9013816
3000 dcant offset 1994 - 2004 1.3966667 1.4623699
3000 dcant offset 1994 - 2014 2.5523333 1.7128169
3000 dcant offset 2004 - 2014 1.2855000 0.8663283
3000 dcant offset rel 1994 - 2004 7.9176115 8.2900791
3000 dcant offset rel 1994 - 2014 6.6349520 4.4525760
3000 dcant offset rel 2004 - 2014 6.1719800 4.1594406
3000 dcant offset rel corr 1994 - 2004 -9.3216175 8.2900791
3000 dcant offset rel corr 1994 - 2014 -8.9234342 4.4525760
3000 dcant offset rel corr 2004 - 2014 -7.9628385 4.1594406
3000 delta C* - mod_truth 1994 - 2004 1.9330000 0.0000000
3000 delta C* - mod_truth 1994 - 2014 3.9040000 0.0000000
3000 delta C* - mod_truth 2004 - 2014 1.9710000 0.0000000
3000 mod_truth 1994 - 2004 17.6400000 0.0000000
3000 mod_truth 1994 - 2014 38.4680000 0.0000000
3000 mod_truth 2004 - 2014 20.8280000 0.0000000
10000 C* drift 1994 - 2004 2.5830000 0.0000000
10000 C* drift 1994 - 2014 5.0640000 0.0000000
10000 C* drift 2004 - 2014 2.4810000 0.0000000
10000 C* prediction error 1994 - 2004 -0.7836667 1.9554335
10000 C* prediction error 1994 - 2014 -1.6490000 2.4401269
10000 C* prediction error 2004 - 2014 -0.6653333 1.0100481
10000 C* prediction error rel 1994 - 2004 -4.3775370 10.9229892
10000 C* prediction error rel 1994 - 2014 -4.2213860 6.2466449
10000 C* prediction error rel 2004 - 2014 -3.1441488 4.7731584
10000 dcant offset 1994 - 2004 1.6278333 2.1418133
10000 dcant offset 1994 - 2014 2.9685000 2.5644361
10000 dcant offset 2004 - 2014 1.5271667 1.0850739
10000 dcant offset rel 1994 - 2004 9.0930250 11.9641006
10000 dcant offset rel 1994 - 2014 7.5992627 6.5648725
10000 dcant offset rel 2004 - 2014 7.2168927 5.1277062
10000 dcant offset rel corr 1994 - 2004 -5.3355305 11.9641006
10000 dcant offset rel corr 1994 - 2014 -5.3644113 6.5648725
10000 dcant offset rel corr 2004 - 2014 -4.5075059 5.1277062
10000 delta C* - mod_truth 1994 - 2004 1.3030000 0.0000000
10000 delta C* - mod_truth 1994 - 2014 2.6320000 0.0000000
10000 delta C* - mod_truth 2004 - 2014 1.3290000 0.0000000
10000 mod_truth 1994 - 2004 17.9020000 0.0000000
10000 mod_truth 1994 - 2014 39.0630000 0.0000000
10000 mod_truth 2004 - 2014 21.1610000 0.0000000

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4   geomtextpath_0.1.0 colorspace_2.0-2   marelac_2.1.10    
 [5] shape_1.4.6        ggforce_0.3.3      metR_0.11.0        scico_1.3.0       
 [9] patchwork_1.1.1    collapse_1.7.0     forcats_0.5.1      stringr_1.4.0     
[13] dplyr_1.0.7        purrr_0.3.4        readr_2.1.1        tidyr_1.1.4       
[17] tibble_3.1.6       ggplot2_3.3.5      tidyverse_1.3.1    workflowr_1.7.0   

loaded via a namespace (and not attached):
 [1] fs_1.5.2           gghalves_0.1.1     bit64_4.0.5        lubridate_1.8.0   
 [5] gsw_1.0-6          RColorBrewer_1.1-2 webshot_0.5.2      httr_1.4.2        
 [9] rprojroot_2.0.2    tools_4.1.2        backports_1.4.1    bslib_0.3.1       
[13] utf8_1.2.2         R6_2.5.1           DBI_1.1.2          withr_2.4.3       
[17] tidyselect_1.1.1   processx_3.5.2     bit_4.0.4          compiler_4.1.2    
[21] git2r_0.29.0       textshaping_0.3.6  cli_3.1.1          rvest_1.0.2       
[25] xml2_1.3.3         labeling_0.4.2     sass_0.4.0         scales_1.1.1      
[29] checkmate_2.0.0    SolveSAPHE_2.1.0   callr_3.7.0        systemfonts_1.0.3 
[33] digest_0.6.29      svglite_2.0.0      rmarkdown_2.11     oce_1.5-0         
[37] pkgconfig_2.0.3    htmltools_0.5.2    highr_0.9          dbplyr_2.1.1      
[41] fastmap_1.1.0      rlang_1.0.2        readxl_1.3.1       rstudioapi_0.13   
[45] jquerylib_0.1.4    generics_0.1.1     farver_2.1.0       jsonlite_1.7.3    
[49] vroom_1.5.7        magrittr_2.0.1     Rcpp_1.0.8         munsell_0.5.0     
[53] fansi_1.0.2        lifecycle_1.0.1    stringi_1.7.6      whisker_0.4       
[57] yaml_2.2.1         MASS_7.3-55        grid_4.1.2         parallel_4.1.2    
[61] promises_1.2.0.1   crayon_1.4.2       haven_2.4.3        hms_1.1.1         
[65] seacarb_3.3.0      knitr_1.37         ps_1.6.0           pillar_1.6.4      
[69] reprex_2.0.1       glue_1.6.0         evaluate_0.14      getPass_0.2-2     
[73] data.table_1.14.2  modelr_0.1.8       vctrs_0.3.8        tzdb_0.2.0        
[77] tweenr_1.0.2       httpuv_1.6.5       cellranger_1.1.0   gtable_0.3.0      
[81] polyclip_1.10-0    assertthat_0.2.1   xfun_0.29          broom_0.7.11      
[85] later_1.3.0        viridisLite_0.4.0  ellipsis_0.3.2     here_1.0.1