Last updated: 2022-11-14
Checks: 7 0
Knit directory:
emlr_obs_analysis/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210412)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 40f357d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/
Ignored: output/other/
Ignored: output/presentation/
Ignored: output/publication/
Untracked files:
Untracked: code/results_publication_backup_incl_ensemble_uncertainty_20221111.Rmd
Unstaged changes:
Deleted: analysis/MLR_target_budgets.Rmd
Deleted: analysis/MLR_target_column_inventories.Rmd
Deleted: analysis/MLR_target_zonal_sections.Rmd
Modified: analysis/_site.yml
Modified: code/Workflowr_project_managment.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/gaps_filter_budgets.Rmd
)
and HTML (docs/gaps_filter_budgets.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | cc337dd | jens-daniel-mueller | 2022-11-11 | Build site. |
html | ec60f68 | jens-daniel-mueller | 2022-11-07 | Build site. |
html | e99640e | jens-daniel-mueller | 2022-07-29 | Build site. |
html | d5765c9 | jens-daniel-mueller | 2022-07-17 | Build site. |
html | 08c00b4 | jens-daniel-mueller | 2022-07-16 | Build site. |
html | 692c937 | jens-daniel-mueller | 2022-07-16 | Build site. |
html | 1aabfea | jens-daniel-mueller | 2022-07-12 | Build site. |
Rmd | 567c3ed | jens-daniel-mueller | 2022-07-12 | revised bias decomposition |
html | b44c72a | jens-daniel-mueller | 2022-07-03 | Build site. |
html | 6e173bf | jens-daniel-mueller | 2022-06-30 | updated regional budget plots |
html | a13a7cf | jens-daniel-mueller | 2022-06-28 | Build site. |
html | b52b159 | jens-daniel-mueller | 2022-06-27 | Build site. |
html | cdabe91 | jens-daniel-mueller | 2022-06-27 | Build site. |
html | 09b0780 | jens-daniel-mueller | 2022-05-24 | Build site. |
html | 25da2fb | jens-daniel-mueller | 2022-05-24 | Build site. |
html | e09320d | jens-daniel-mueller | 2022-04-12 | Build site. |
html | 8dca96a | jens-daniel-mueller | 2022-04-12 | Build site. |
html | acad2e2 | jens-daniel-mueller | 2022-04-09 | Build site. |
html | c3a6238 | jens-daniel-mueller | 2022-03-08 | Build site. |
html | de557de | jens-daniel-mueller | 2022-01-28 | Build site. |
html | 9753eb8 | jens-daniel-mueller | 2022-01-26 | Build site. |
html | f347cd7 | jens-daniel-mueller | 2022-01-18 | Build site. |
html | 513630f | jens-daniel-mueller | 2022-01-18 | Build site. |
html | d7dfc7c | jens-daniel-mueller | 2022-01-18 | Build site. |
html | 3b07c04 | jens-daniel-mueller | 2022-01-12 | Build site. |
Rmd | 53dee50 | jens-daniel-mueller | 2022-01-12 | rebuild with correct config |
html | 269809e | jens-daniel-mueller | 2022-01-12 | Build site. |
Rmd | 0e16fb3 | jens-daniel-mueller | 2022-01-12 | rebuild without any gap filter or flagging exceptions |
html | 1696b98 | jens-daniel-mueller | 2022-01-11 | Build site. |
html | 570e738 | jens-daniel-mueller | 2022-01-10 | Build site. |
html | 9bf6789 | jens-daniel-mueller | 2022-01-10 | Build site. |
html | b10afbc | jens-daniel-mueller | 2022-01-05 | Build site. |
html | f0c828a | jens-daniel-mueller | 2021-12-22 | Build site. |
html | 316ea5f | jens-daniel-mueller | 2021-12-09 | Build site. |
html | 9c72ef3 | jens-daniel-mueller | 2021-12-08 | Build site. |
html | f4250b0 | jens-daniel-mueller | 2021-12-08 | Build site. |
html | bd4091f | jens-daniel-mueller | 2021-12-04 | Build site. |
html | ecbdffe | jens-daniel-mueller | 2021-12-03 | Build site. |
Rmd | ade2bab | jens-daniel-mueller | 2021-12-03 | revised gap filling analysis |
html | 7e0a36b | jens-daniel-mueller | 2021-11-21 | Build site. |
html | e505a4b | jens-daniel-mueller | 2021-11-09 | Build site. |
html | 66ec048 | jens-daniel-mueller | 2021-11-04 | Build site. |
Rmd | 3eaddfc | jens-daniel-mueller | 2021-11-04 | compared G19 and this study directly |
html | f7c3da2 | jens-daniel-mueller | 2021-11-03 | Build site. |
html | e534f51 | jens-daniel-mueller | 2021-11-02 | Build site. |
html | 57cfc36 | jens-daniel-mueller | 2021-11-01 | Build site. |
html | 4331a22 | jens-daniel-mueller | 2021-10-29 | Build site. |
html | ae5ae64 | jens-daniel-mueller | 2021-10-26 | Build site. |
html | 581baa0 | jens-daniel-mueller | 2021-10-07 | Build site. |
html | a7af62f | jens-daniel-mueller | 2021-10-06 | Build site. |
html | f9b4f93 | jens-daniel-mueller | 2021-10-05 | Build site. |
Rmd | 066f9b0 | jens-daniel-mueller | 2021-10-05 | add no gap filling and flag filter analysis |
version_id_pattern <- "g"
config <- "MLR_basins"
print(version_id_pattern)
[1] "g"
# identify required version IDs
Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_1", "g"))
Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_2", "g"))
Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_3", "g"))
Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)
# print(Version_IDs)
for (i_Version_IDs in Version_IDs) {
# i_Version_IDs <- Version_IDs[1]
# print(i_Version_IDs)
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_budget_global <-
read_csv(paste(path_version_data,
"dcant_budget_global.csv",
sep = ""))
dcant_budget_global_mod_truth <-
read_csv(paste(
path_version_data,
"dcant_budget_global_mod_truth.csv",
sep = ""
))
dcant_budget_global_bias <-
read_csv(paste(path_version_data,
"dcant_budget_global_bias.csv",
sep = ""))
lm_best_predictor_counts <-
read_csv(paste(path_version_data,
"lm_best_predictor_counts.csv",
sep = ""))
lm_best_dcant <-
read_csv(paste(path_version_data,
"lm_best_dcant.csv",
sep = ""))
dcant_budget_global <- bind_rows(dcant_budget_global,
dcant_budget_global_mod_truth)
dcant_budget_global <- dcant_budget_global %>%
mutate(Version_ID = i_Version_IDs)
dcant_budget_global_bias <- dcant_budget_global_bias %>%
mutate(Version_ID = i_Version_IDs)
lm_best_predictor_counts <- lm_best_predictor_counts %>%
mutate(Version_ID = i_Version_IDs)
lm_best_dcant <- lm_best_dcant %>%
mutate(Version_ID = i_Version_IDs)
params_local <-
read_rds(paste(path_version_data,
"params_local.rds",
sep = ""))
params_local <- bind_cols(
Version_ID = i_Version_IDs,
MLR_basins := str_c(params_local$MLR_basins, collapse = "|"),
tref1 = params_local$tref1,
tref2 = params_local$tref2)
tref <- read_csv(paste(path_version_data,
"tref.csv",
sep = ""))
params_local <- params_local %>%
mutate(
median_year_1 = sort(tref$median_year)[1],
median_year_2 = sort(tref$median_year)[2],
duration = median_year_2 - median_year_1,
period = paste(median_year_1, "-", median_year_2)
)
if (exists("dcant_budget_global_all")) {
dcant_budget_global_all <-
bind_rows(dcant_budget_global_all, dcant_budget_global)
}
if (!exists("dcant_budget_global_all")) {
dcant_budget_global_all <- dcant_budget_global
}
if (exists("dcant_budget_global_bias_all")) {
dcant_budget_global_bias_all <-
bind_rows(dcant_budget_global_bias_all,
dcant_budget_global_bias)
}
if (!exists("dcant_budget_global_bias_all")) {
dcant_budget_global_bias_all <- dcant_budget_global_bias
}
if (exists("lm_best_predictor_counts_all")) {
lm_best_predictor_counts_all <-
bind_rows(lm_best_predictor_counts_all, lm_best_predictor_counts)
}
if (!exists("lm_best_predictor_counts_all")) {
lm_best_predictor_counts_all <- lm_best_predictor_counts
}
if (exists("lm_best_dcant_all")) {
lm_best_dcant_all <-
bind_rows(lm_best_dcant_all, lm_best_dcant)
}
if (!exists("lm_best_dcant_all")) {
lm_best_dcant_all <- lm_best_dcant
}
if (exists("params_local_all")) {
params_local_all <- bind_rows(params_local_all, params_local)
}
if (!exists("params_local_all")) {
params_local_all <- params_local
}
}
rm(
dcant_budget_global,
dcant_budget_global_bias,
dcant_budget_global_mod_truth,
lm_best_predictor_counts,
lm_best_dcant,
params_local,
tref
)
# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]
for (i_Version_IDs in Version_IDs) {
# i_Version_IDs <- Version_IDs[1]
# print(i_Version_IDs)
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_budget_basin_AIP <-
read_csv(paste(path_version_data,
"dcant_budget_basin_AIP.csv",
sep = ""))
dcant_budget_basin_AIP_mod_truth <-
read_csv(paste(
path_version_data,
"dcant_budget_basin_AIP_mod_truth.csv",
sep = ""
))
dcant_budget_basin_AIP <- bind_rows(dcant_budget_basin_AIP,
dcant_budget_basin_AIP_mod_truth)
dcant_budget_basin_AIP_bias <-
read_csv(paste(path_version_data,
"dcant_budget_basin_AIP_bias.csv",
sep = ""))
dcant_slab_budget_bias <-
read_csv(paste0(path_version_data,
"dcant_slab_budget_bias.csv"))
dcant_slab_budget <-
read_csv(paste0(path_version_data,
"dcant_slab_budget.csv"))
dcant_budget_basin_AIP <- dcant_budget_basin_AIP %>%
mutate(Version_ID = i_Version_IDs)
dcant_budget_basin_AIP_bias <- dcant_budget_basin_AIP_bias %>%
mutate(Version_ID = i_Version_IDs)
dcant_slab_budget <- dcant_slab_budget %>%
mutate(Version_ID = i_Version_IDs)
dcant_slab_budget_bias <- dcant_slab_budget_bias %>%
mutate(Version_ID = i_Version_IDs)
if (exists("dcant_budget_basin_AIP_all")) {
dcant_budget_basin_AIP_all <-
bind_rows(dcant_budget_basin_AIP_all, dcant_budget_basin_AIP)
}
if (!exists("dcant_budget_basin_AIP_all")) {
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP
}
if (exists("dcant_budget_basin_AIP_bias_all")) {
dcant_budget_basin_AIP_bias_all <-
bind_rows(dcant_budget_basin_AIP_bias_all,
dcant_budget_basin_AIP_bias)
}
if (!exists("dcant_budget_basin_AIP_bias_all")) {
dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias
}
if (exists("dcant_slab_budget_all")) {
dcant_slab_budget_all <-
bind_rows(dcant_slab_budget_all, dcant_slab_budget)
}
if (!exists("dcant_slab_budget_all")) {
dcant_slab_budget_all <- dcant_slab_budget
}
if (exists("dcant_slab_budget_bias_all")) {
dcant_slab_budget_bias_all <-
bind_rows(dcant_slab_budget_bias_all,
dcant_slab_budget_bias)
}
if (!exists("dcant_slab_budget_bias_all")) {
dcant_slab_budget_bias_all <- dcant_slab_budget_bias
}
}
rm(
dcant_budget_basin_AIP,
dcant_budget_basin_AIP_bias,
dcant_budget_basin_AIP_mod_truth,
dcant_slab_budget,
dcant_slab_budget_bias
)
# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]
for (i_Version_IDs in Version_IDs) {
# i_Version_IDs <- Version_IDs[1]
# print(i_Version_IDs)
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_budget_basin_MLR <-
read_csv(paste(path_version_data,
"dcant_budget_basin_MLR.csv",
sep = ""))
dcant_budget_basin_MLR_mod_truth <-
read_csv(paste(
path_version_data,
"dcant_budget_basin_MLR_mod_truth.csv",
sep = ""
))
dcant_budget_basin_MLR <- bind_rows(dcant_budget_basin_MLR,
dcant_budget_basin_MLR_mod_truth)
dcant_budget_basin_MLR <- dcant_budget_basin_MLR %>%
mutate(Version_ID = i_Version_IDs)
if (exists("dcant_budget_basin_MLR_all")) {
dcant_budget_basin_MLR_all <-
bind_rows(dcant_budget_basin_MLR_all, dcant_budget_basin_MLR)
}
if (!exists("dcant_budget_basin_MLR_all")) {
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR
}
}
rm(
dcant_budget_basin_MLR,
dcant_budget_basin_MLR_mod_truth
)
for (i_Version_IDs in Version_IDs) {
# i_Version_IDs <- Version_IDs[1]
# print(i_Version_IDs)
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_obs_budget <-
read_csv(paste0(path_version_data,
"anom_dcant_obs_budget.csv"))
dcant_obs_budget <- dcant_obs_budget %>%
mutate(Version_ID = i_Version_IDs)
if (exists("dcant_obs_budget_all")) {
dcant_obs_budget_all <-
bind_rows(dcant_obs_budget_all, dcant_obs_budget)
}
if (!exists("dcant_obs_budget_all")) {
dcant_obs_budget_all <- dcant_obs_budget
}
}
rm(dcant_obs_budget)
co2_atm <-
read_csv(paste(path_preprocessing,
"co2_atm.csv",
sep = ""))
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")
params_local_all <- params_local_all %>%
mutate(MLR_predictors = str_remove_all(all_predictors,
MLR_predictors))
dcant_budget_global_all <- dcant_budget_global_all %>%
filter(estimate == "dcant",
method == "total") %>%
select(-c(estimate, method)) %>%
rename(dcant = value)
dcant_budget_global_all_depth <- dcant_budget_global_all
dcant_budget_global_all <- dcant_budget_global_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
filter(estimate == "dcant") %>%
select(-c(estimate))
dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all
dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
filter(estimate == "dcant",
method == "total") %>%
select(-c(estimate, method)) %>%
rename(dcant = value)
dcant_budget_basin_AIP_all_depth <- dcant_budget_basin_AIP_all
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
filter(estimate == "dcant") %>%
select(-c(estimate))
dcant_budget_basin_AIP_bias_all_depth <- dcant_budget_basin_AIP_bias_all
dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
filter(estimate == "dcant",
method == "total") %>%
select(-c(estimate, method)) %>%
rename(dcant = value)
# dcant_budget_basin_MLR_all_depth <- dcant_budget_basin_MLR_all
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
# filter(estimate == "dcant") %>%
# select(-c(estimate))
#
# dcant_budget_basin_MLR_bias_all_depth <- dcant_budget_basin_MLR_bias_all
#
# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
# filter(inv_depth == params_global$inventory_depth_standard)
global_bias_rel_max <- 10
global_bias_rel_max
[1] 10
regional_bias_rel_max <- 20
regional_bias_rel_max
[1] 20
legend_title = expression(atop(Delta * C[ant],
(mu * mol ~ kg ^ {
-1
})))
dcant_budget_global_all %>%
ggplot(aes(period, dcant, col = MLR_basins)) +
geom_jitter(width = 0.05, height = 0) +
scale_color_brewer(palette = "Dark2") +
facet_grid(. ~ data_source) +
ylim(0,NA) +
theme(axis.text.x = element_text(angle = 45, hjust=1),
axis.title.x = element_blank())
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_global_bias_all %>%
ggplot(aes(period, dcant_bias, col=MLR_basins)) +
geom_hline(yintercept = 0) +
scale_color_brewer(palette = "Dark2") +
labs(y = expression(atop(Delta * C[ant] ~ bias,
(PgC)))) +
geom_point() +
theme(axis.text.x = element_blank(),
axis.title.x = element_blank())
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
1aabfea | jens-daniel-mueller | 2022-07-12 |
b44c72a | jens-daniel-mueller | 2022-07-03 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
p_global_bias <-
dcant_budget_global_bias_all %>%
ggplot() +
geom_hline(yintercept = global_bias_rel_max * c(-1, 1),
linetype = 2) +
geom_hline(yintercept = 0) +
scale_color_brewer(palette = "Dark2") +
labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
title = "Model-based assesment") +
theme(axis.title.x = element_blank()) +
geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
alpha = 0.7) +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
axis.title.x = element_blank())
p_global_bias
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
b44c72a | jens-daniel-mueller | 2022-07-03 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_global_bias_all %>%
group_by(period) %>%
summarise(
dcant_bias_sd = sd(dcant_bias),
dcant_bias = mean(dcant_bias),
dcant_bias_rel_sd = sd(dcant_bias_rel),
dcant_bias_rel = mean(dcant_bias_rel)
) %>%
ungroup() %>%
kable() %>%
kable_styling() %>%
scroll_box(height = "300px")
period | dcant_bias_sd | dcant_bias | dcant_bias_rel_sd | dcant_bias_rel |
---|---|---|---|---|
1994 - 2004 | 1.4623699 | 1.396667 | 8.290079 | 7.917611 |
1994 - 2014 | 1.7128169 | 2.552333 | 4.452576 | 6.634952 |
2004 - 2014 | 0.8663283 | 1.285500 | 4.159441 | 6.171980 |
dcant_budget_basin_AIP_all %>%
ggplot(aes(period, dcant, col = MLR_basins)) +
geom_jitter(width = 0.05, height = 0) +
scale_color_brewer(palette = "Dark2") +
facet_grid(basin_AIP ~ data_source) +
ylim(0,NA) +
theme(axis.text.x = element_text(angle = 45, hjust=1),
axis.title.x = element_blank())
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_basin_AIP_bias_all %>%
ggplot(aes(period, dcant_bias, col=MLR_basins)) +
geom_hline(yintercept = 0) +
geom_point() +
facet_grid(basin_AIP ~ .)
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
1aabfea | jens-daniel-mueller | 2022-07-12 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_basin_AIP_bias_all %>%
ggplot() +
geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
x = "2004 - 2014", width = Inf,
fill = "bias\nthreshold"), alpha = 0.5) +
geom_hline(yintercept = 0) +
scale_fill_manual(values = "grey70", name = "") +
scale_color_brewer(palette = "Dark2") +
labs(y = expression(Delta ~ C[ant] ~ bias)) +
theme(axis.title.x = element_blank()) +
geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
width = 0.05, height = 0) +
facet_grid(. ~ basin_AIP)
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
1aabfea | jens-daniel-mueller | 2022-07-12 |
b44c72a | jens-daniel-mueller | 2022-07-03 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
p_regional_bias <-
dcant_budget_basin_AIP_bias_all %>%
ggplot() +
geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
linetype = 2) +
geom_hline(yintercept = 0) +
scale_color_brewer(palette = "Dark2") +
labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
title = "Model-based assesment") +
theme(axis.title.x = element_blank()) +
geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
alpha = 0.7) +
theme(axis.text.x = element_text(angle = 45, hjust=1),
axis.title.x = element_blank()) +
facet_grid(. ~ basin_AIP) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank()
)
p_regional_bias
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
b44c72a | jens-daniel-mueller | 2022-07-03 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_slab_budget_all %>%
filter(data_source == "obs",
period != "1994 - 2014") %>%
ggplot(aes(MLR_basins, dcant, fill = gamma_slab)) +
geom_hline(yintercept = 0, col = "red") +
geom_col() +
scale_fill_scico_d(direction = -1) +
facet_grid(basin_AIP ~ period)
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_slab_budget_all %>%
filter(data_source == "obs",
period != "1994 - 2014") %>%
group_by(basin_AIP) %>%
group_split() %>%
map(
~ ggplot(data = .x,
aes(MLR_basins, dcant, fill = gamma_slab)) +
geom_hline(yintercept = 0) +
geom_col() +
scale_fill_scico_d(direction = -1) +
labs(title = paste("data_source:", unique(.x$basin_AIP))) +
facet_grid(gamma_slab ~ period)
)
[[1]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[2]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[3]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_slab_budget_bias_all %>%
filter(period != "1994 - 2014") %>%
group_by(basin_AIP) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(gamma_slab, dcant_bias, fill = gamma_slab)) +
geom_col() +
coord_flip() +
scale_x_discrete(limits = rev) +
scale_fill_scico_d(direction = -1) +
facet_grid(period ~ MLR_basins) +
labs(title = paste("data_source:", unique(.x$basin_AIP)))
)
[[1]]
Warning: Removed 40 rows containing missing values (position_stack).
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[2]]
Warning: Removed 24 rows containing missing values (position_stack).
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[3]]
Warning: Removed 108 rows containing missing values (position_stack).
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_slab_budget_all %>%
filter(period != "1994 - 2014",
data_source != "mod_truth") %>%
group_by(data_source, basin_AIP, gamma_slab, period) %>%
summarise(dcant_range = max(dcant) - min(dcant)) %>%
ungroup() %>%
group_split(basin_AIP) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(gamma_slab, dcant_range, fill = gamma_slab)) +
geom_col() +
coord_flip() +
scale_x_discrete(limits = rev) +
scale_fill_scico_d(direction = -1) +
facet_grid(period ~ data_source) +
labs(title = paste("data_source:", unique(.x$basin_AIP)))
)
`summarise()` has grouped output by 'data_source', 'basin_AIP', 'gamma_slab'.
You can override using the `.groups` argument.
[[1]]
[[2]]
[[3]]
dcant_budget_basin_MLR_all %>%
ggplot(aes(period, dcant, col = MLR_basins)) +
geom_jitter(width = 0.05, height = 0) +
scale_color_brewer(palette = "Dark2") +
facet_grid(basin ~ data_source) +
ylim(0,NA) +
theme(axis.text.x = element_text(angle = 45, hjust=1),
axis.title.x = element_blank())
dcant_budget_basin_MLR_bias_all <-
dcant_budget_basin_MLR_all %>%
filter(data_source %in% c("mod", "mod_truth")) %>%
pivot_wider(names_from = data_source,
values_from = dcant) %>%
mutate(dcant_bias = mod - mod_truth,
dcant_bias_rel = 100*(mod - mod_truth)/mod_truth)
dcant_budget_basin_MLR_bias_all %>%
ggplot(aes(period, dcant_bias, col=MLR_basins)) +
geom_hline(yintercept = 0) +
geom_point() +
facet_grid(basin ~ .)
dcant_budget_basin_MLR_bias_all %>%
ggplot() +
geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
x = "2004 - 2014", width = Inf,
fill = "bias\nthreshold"), alpha = 0.5) +
geom_hline(yintercept = 0) +
scale_fill_manual(values = "grey70", name = "") +
scale_color_brewer(palette = "Dark2") +
labs(y = expression(Delta ~ C[ant] ~ bias)) +
theme(axis.title.x = element_blank()) +
geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
width = 0.05, height = 0) +
facet_grid(. ~ basin)
p_regional_bias <-
dcant_budget_basin_MLR_bias_all %>%
ggplot() +
geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
linetype = 2) +
geom_hline(yintercept = 0) +
scale_color_brewer(palette = "Dark2") +
labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
title = "Model-based assesment") +
theme(axis.title.x = element_blank()) +
geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
alpha = 0.7) +
theme(axis.text.x = element_text(angle = 45, hjust=1),
axis.title.x = element_blank()) +
facet_grid(. ~ basin) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank()
)
p_regional_bias
dcant_budget_basin_MLR_bias_all %>%
group_by(period, basin) %>%
summarise(
dcant_bias_sd = sd(dcant_bias),
dcant_bias = mean(dcant_bias),
dcant_bias_rel_sd = sd(dcant_bias_rel),
dcant_bias_rel = mean(dcant_bias_rel)
) %>%
ungroup() %>%
kable() %>%
kable_styling() %>%
scroll_box(height = "300px")
`summarise()` has grouped output by 'period'. You can override using the
`.groups` argument.
period | basin | dcant_bias_sd | dcant_bias | dcant_bias_rel_sd | dcant_bias_rel |
---|---|---|---|---|---|
1994 - 2004 | Indian | 0.9977261 | 0.2198333 | 20.695418 | 4.559912 |
1994 - 2004 | N_Atlantic | 0.2349874 | 0.2005000 | 12.044462 | 10.276781 |
1994 - 2004 | N_Pacific | 0.1787092 | 0.4691667 | 6.579866 | 17.274178 |
1994 - 2004 | S_Atlantic | 0.2865469 | 0.0955000 | 11.461874 | 3.820000 |
1994 - 2004 | S_Pacific | 0.8011616 | 0.4116667 | 14.174833 | 7.283557 |
1994 - 2014 | Indian | 1.2941599 | 0.7306667 | 12.386676 | 6.993364 |
1994 - 2014 | N_Atlantic | 0.3465991 | -0.0478333 | 8.067950 | -1.113439 |
1994 - 2014 | N_Pacific | 0.2536877 | 0.5663333 | 4.345456 | 9.700811 |
1994 - 2014 | S_Atlantic | 0.3459918 | 0.4515000 | 6.541724 | 8.536585 |
1994 - 2014 | S_Pacific | 1.2831324 | 0.8516667 | 10.186015 | 6.760869 |
2004 - 2014 | Indian | 0.5375986 | 0.4635000 | 9.555610 | 8.238535 |
2004 - 2014 | N_Atlantic | 0.1797095 | -0.1295000 | 7.663518 | -5.522388 |
2004 - 2014 | N_Pacific | 0.2146098 | 0.1411667 | 6.874113 | 4.521674 |
2004 - 2014 | S_Atlantic | 0.2104428 | 0.4108333 | 7.545457 | 14.730489 |
2004 - 2014 | S_Pacific | 0.5028805 | 0.4000000 | 7.240900 | 5.759539 |
dcant_budget_global_all_in <- dcant_budget_global_all %>%
filter(data_source %in% c("mod", "obs"))
dcant_budget_global_ensemble <- dcant_budget_global_all_in %>%
group_by(data_source, period, tref2) %>%
summarise(dcant_mean = mean(dcant),
dcant_sd = sd(dcant),
dcant_range = max(dcant)- min(dcant)) %>%
ungroup()
`summarise()` has grouped output by 'data_source', 'period'. You can override
using the `.groups` argument.
legend_title = expression(Delta * C[ant]~(PgC))
ggplot() +
geom_col(data = dcant_budget_global_ensemble,
aes(x = period,
y = dcant_mean),
fill = "darkgrey") +
geom_errorbar(
data = dcant_budget_global_ensemble,
aes(
x = period,
y = dcant_mean,
ymax = dcant_mean + dcant_sd,
ymin = dcant_mean - dcant_sd
),
width = 0.1
) +
geom_point(
data = dcant_budget_global_all,
aes(period, dcant, col = MLR_basins),
alpha = 0.7,
position = position_jitter(width = 0.2, height = 0)
) +
scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
scale_color_brewer(palette = "Dark2") +
facet_grid(. ~ data_source) +
labs(y = legend_title) +
theme(axis.text.x = element_text(angle = 45, hjust=1),
axis.title.x = element_blank())
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
b44c72a | jens-daniel-mueller | 2022-07-03 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
f347cd7 | jens-daniel-mueller | 2022-01-18 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
p_global_dcant <- ggplot() +
geom_col(data = dcant_budget_global_ensemble %>%
filter(data_source == "obs"),
aes(x = period,
y = dcant_mean),
fill = "darkgrey") +
geom_point(
data = dcant_budget_global_all %>%
filter(data_source == "obs"),
aes(period, dcant, col = MLR_basins),
alpha = 0.7,
position = position_jitter(width = 0.1, height = 0)
) +
geom_errorbar(
data = dcant_budget_global_ensemble %>%
filter(data_source == "obs"),
aes(
x = period,
y = dcant_mean,
ymax = dcant_mean + dcant_sd,
ymin = dcant_mean - dcant_sd
),
width = 0.1
) +
scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
scale_color_brewer(palette = "Dark2") +
labs(y = legend_title,
title = "Observation-based results") +
theme(axis.text.x = element_blank(),
axis.title.x = element_blank())
p_global_dcant_bias <-
p_global_dcant / p_global_bias +
plot_layout(guides = 'collect',
heights = c(2,1))
p_global_dcant_bias
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
b44c72a | jens-daniel-mueller | 2022-07-03 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
f347cd7 | jens-daniel-mueller | 2022-01-18 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
# ggsave(plot = p_global_dcant_bias,
# path = here::here("output/publication"),
# filename = "Fig_global_dcant_budget.png",
# height = 5,
# width = 5)
rm(p_global_bias, p_global_dcant, p_global_dcant_bias)
dcant_ensemble <- dcant_budget_global_ensemble %>%
filter(data_source == "obs",
period != "1994 - 2014") %>%
select(year = tref2, dcant_mean, dcant_sd)
tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)
tcant_ensemble <- full_join(dcant_ensemble, tcant_S04)
Joining, by = c("year", "dcant_mean", "dcant_sd")
tcant_ensemble <- left_join(tcant_ensemble, co2_atm)
Joining, by = "year"
co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)
tcant_ensemble <- full_join(tcant_ensemble, co2_atm_pi)
Joining, by = c("year", "dcant_mean", "dcant_sd", "pCO2")
tcant_ensemble <- tcant_ensemble %>%
arrange(year) %>%
mutate(tcant = cumsum(dcant_mean),
tcant_sd = cumsum(dcant_sd))
tcant_ensemble %>%
ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
geom_ribbon(fill = "grey80") +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(280, 400, 30),
sec.axis = dup_axis(labels = c(1750, 1940, 1980, 2000, 2015),
name = "Year")) +
geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
labs(x = expression(Atmospheric~pCO[2]~(µatm)),
y = expression(Total~oceanic~C[ant]~(PgC)))
# ggsave(path = "output/publication",
# filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
# height = 4,
# width = 7)
dcant_budget_global_all_in_sum <-
dcant_budget_global_all_in %>%
filter(period != "1994 - 2014") %>%
arrange(tref1) %>%
group_by(data_source, MLR_basins) %>%
mutate(dcant = dcant + lag(dcant)) %>%
ungroup() %>%
drop_na() %>%
mutate(estimate = "sum")
dcant_budget_global_all_in_sum <-
bind_rows(
dcant_budget_global_all_in_sum,
dcant_budget_global_all_in %>%
filter(period == "1994 - 2014") %>%
mutate(estimate = "direct")
)
ggplot() +
geom_point(
data = dcant_budget_global_all_in_sum,
aes(estimate, dcant, col = MLR_basins),
alpha = 0.7,
position = position_jitter(width = 0, height = 0)
) +
scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
scale_color_brewer(palette = "Dark2") +
facet_grid(. ~ data_source) +
theme(axis.text.x = element_text(angle = 45, hjust=1),
axis.title.x = element_blank())
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_global_ensemble_bias <- full_join(
dcant_budget_global_ensemble %>%
filter(data_source == "mod") %>%
select(period, dcant_mean, dcant_sd),
dcant_budget_global_all %>%
filter(data_source == "mod_truth",
MLR_basins == unique(dcant_budget_global_all$MLR_basins)[1]) %>%
select(period, dcant)
)
Joining, by = "period"
dcant_budget_global_ensemble_bias <- dcant_budget_global_ensemble_bias %>%
mutate(dcant_mean_bias = dcant_mean - dcant,
dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)
dcant_budget_global_ensemble_bias %>%
ggplot(aes(period, dcant_mean_bias)) +
geom_hline(yintercept = 0) +
geom_point()
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_global_ensemble_bias %>%
ggplot(aes(period, dcant_mean_bias_rel)) +
geom_hline(yintercept = 0) +
geom_point()
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_global_all_depth %>%
filter(data_source != "mod_truth") %>%
group_by(data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(dcant, MLR_basins, fill=period)) +
geom_vline(xintercept = 0) +
geom_col(position = "dodge") +
scale_fill_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ .) +
labs(title = paste("data_source:", unique(.x$data_source)))
)
[[1]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[2]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_global_bias_all_depth %>%
ggplot(aes(dcant_bias, MLR_basins, fill = period)) +
geom_vline(xintercept = 0) +
geom_col(position = "dodge") +
scale_fill_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ .)
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
1aabfea | jens-daniel-mueller | 2022-07-12 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_global_bias_all_depth %>%
ggplot(aes(dcant_bias_rel, MLR_basins, fill = period)) +
geom_vline(xintercept = 0) +
geom_col(position = "dodge") +
scale_fill_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ .)
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
rm(dcant_budget_global_all,
dcant_budget_global_all_depth,
dcant_budget_global_bias_all,
dcant_budget_global_bias_all_depth,
dcant_budget_global_ensemble,
dcant_budget_global_ensemble_bias)
dcant_budget_basin_AIP_ensemble <- dcant_budget_basin_AIP_all %>%
filter(data_source %in% c("mod", "obs")) %>%
group_by(basin_AIP, data_source, period) %>%
summarise(dcant_mean = mean(dcant),
dcant_sd = sd(dcant),
dcant_range = max(dcant)- min(dcant)) %>%
ungroup()
`summarise()` has grouped output by 'basin_AIP', 'data_source'. You can override
using the `.groups` argument.
dcant_budget_basin_AIP_ensemble %>%
ggplot(aes(period, dcant_mean, col=basin_AIP)) +
geom_pointrange(aes(ymax = dcant_mean + dcant_sd,
ymin = dcant_mean - dcant_sd),
shape = 21) +
facet_grid(. ~ data_source)
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
p_regional_dcant <- ggplot() +
geom_col(
data = dcant_budget_basin_AIP_ensemble %>%
filter(data_source == "obs"),
aes(x = period,
y = dcant_mean),
fill = "darkgrey"
) +
geom_point(
data = dcant_budget_basin_AIP_all %>%
filter(data_source == "obs"),
aes(period, dcant, col = MLR_basins),
position = position_jitter(width = 0.1, height = 0),
alpha = 0.7
) +
geom_errorbar(
data = dcant_budget_basin_AIP_ensemble %>%
filter(data_source == "obs"),
aes(
x = period,
y = dcant_mean,
ymax = dcant_mean + dcant_sd,
ymin = dcant_mean - dcant_sd
),
width = 0.1
) +
scale_y_continuous(limits = c(0, 35), expand = c(0, 0)) +
scale_color_brewer(palette = "Dark2") +
labs(y = legend_title,
title = "Observation-based results") +
theme(axis.text.x = element_blank(),
axis.title.x = element_blank()) +
facet_grid(. ~ basin_AIP)
p_regional_dcant_bias <-
p_regional_dcant / p_regional_bias +
plot_layout(guides = 'collect',
heights = c(2,1))
p_regional_dcant_bias
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
b44c72a | jens-daniel-mueller | 2022-07-03 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
f347cd7 | jens-daniel-mueller | 2022-01-18 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
66ec048 | jens-daniel-mueller | 2021-11-04 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
# ggsave(plot = p_regional_dcant_bias,
# path = "output/publication",
# filename = "Fig_regional_dcant_budget.png",
# height = 5,
# width = 10)
rm(p_regional_bias, p_regional_dcant, p_regional_dcant_bias)
dcant_budget_basin_AIP_ensemble_bias <- full_join(
dcant_budget_basin_AIP_ensemble %>%
filter(data_source == "mod") %>%
select(basin_AIP, period, dcant_mean, dcant_sd),
dcant_budget_basin_AIP_all %>%
filter(data_source == "mod_truth",
MLR_basins == unique(dcant_budget_basin_AIP_all$MLR_basins)[1]) %>%
select(basin_AIP, period, dcant)
)
Joining, by = c("basin_AIP", "period")
dcant_budget_basin_AIP_ensemble_bias <- dcant_budget_basin_AIP_ensemble_bias %>%
mutate(dcant_mean_bias = dcant_mean - dcant,
dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)
dcant_budget_basin_AIP_ensemble_bias %>%
ggplot(aes(period, dcant_mean_bias, col = basin_AIP)) +
geom_hline(yintercept = 0) +
geom_point()
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_basin_AIP_ensemble_bias %>%
ggplot(aes(period, dcant_mean_bias_rel, col = basin_AIP)) +
geom_hline(yintercept = 0) +
geom_point()
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
c3a6238 | jens-daniel-mueller | 2022-03-08 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_basin_AIP_all_depth %>%
filter(data_source != "mod_truth") %>%
group_by(data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(dcant, MLR_basins, fill = basin_AIP)) +
geom_vline(xintercept = 0) +
geom_col() +
scale_fill_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ period) +
labs(title = paste("data_source:", unique(.x$data_source)))
)
[[1]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[2]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_basin_AIP_bias_all_depth %>%
ggplot(aes(dcant_bias, MLR_basins, fill = basin_AIP)) +
geom_vline(xintercept = 0) +
geom_col() +
scale_fill_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ period)
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
1aabfea | jens-daniel-mueller | 2022-07-12 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_budget_basin_AIP_bias_all_depth %>%
ggplot(aes(dcant_bias_rel, MLR_basins, fill = basin_AIP)) +
geom_vline(xintercept = 0) +
geom_col(position = "dodge") +
scale_fill_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ period)
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
dcant_obs_budget_all %>%
group_by(inv_depth) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(estimate, dcant_pos, fill = basin_AIP)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(MLR_basins ~ period) +
labs(title = paste("inventory depth:",unique(.x$inv_depth)))
)
[[1]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[2]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[3]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[4]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
[[5]]
Version | Author | Date |
---|---|---|
ec60f68 | jens-daniel-mueller | 2022-11-07 |
d5765c9 | jens-daniel-mueller | 2022-07-17 |
cdabe91 | jens-daniel-mueller | 2022-06-27 |
3b07c04 | jens-daniel-mueller | 2022-01-12 |
269809e | jens-daniel-mueller | 2022-01-12 |
b10afbc | jens-daniel-mueller | 2022-01-05 |
f0c828a | jens-daniel-mueller | 2021-12-22 |
316ea5f | jens-daniel-mueller | 2021-12-09 |
9c72ef3 | jens-daniel-mueller | 2021-12-08 |
f4250b0 | jens-daniel-mueller | 2021-12-08 |
bd4091f | jens-daniel-mueller | 2021-12-04 |
ecbdffe | jens-daniel-mueller | 2021-12-03 |
f9b4f93 | jens-daniel-mueller | 2021-10-05 |
lm_best_predictor_counts_all <-
full_join(lm_best_predictor_counts_all,
params_local_all)
Joining, by = "Version_ID"
lm_best_predictor_counts_all <- lm_best_predictor_counts_all %>%
mutate(n_predictors_total = rowSums(across(aou:temp), na.rm = TRUE)/10)
lm_best_predictor_counts_all %>%
ggplot(aes(x = MLR_basins, y = n_predictors_total)) +
# ggdist::stat_halfeye(
# adjust = .5,
# width = .6,
# .width = 0,
# justification = -.2,
# point_colour = NA
# ) +
geom_boxplot(width = 0.5,
outlier.shape = NA) +
gghalves::geom_half_point(
side = "l",
range_scale = .4,
alpha = .5,
aes(col = gamma_slab)
) +
scale_color_viridis_d() +
facet_grid(basin ~ data_source)
lm_best_predictor_counts_all %>%
pivot_longer(aou:temp,
names_to = "predictor",
values_to = "count") %>%
group_split(predictor) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(MLR_basins, count, color = gamma_slab)) +
geom_jitter(alpha = 0.5) +
scale_color_viridis_d() +
labs(title = paste0("predictor:", unique(.x$predictor))) +
coord_cartesian(ylim = c(0, 10)) +
facet_grid(basin ~ data_source)
)
[[1]]
Warning: Removed 2 rows containing missing values (geom_point).
[[2]]
Warning: Removed 44 rows containing missing values (geom_point).
[[3]]
Warning: Removed 1 rows containing missing values (geom_point).
[[4]]
Warning: Removed 9 rows containing missing values (geom_point).
[[5]]
[[6]]
Warning: Removed 3 rows containing missing values (geom_point).
[[7]]
Warning: Removed 2 rows containing missing values (geom_point).
lm_best_dcant_all <-
full_join(lm_best_dcant_all,
params_local_all)
Joining, by = "Version_ID"
lm_best_dcant_all %>%
count(basin, data_source, gamma_slab, MLR_basins, period) %>%
ggplot(aes(MLR_basins, n)) +
geom_jitter(height = 0, alpha = 0.3) +
facet_grid(basin ~ data_source)
dcant_budget_global_all_dissic %>%
filter(estimate == "dcant") %>%
ggplot(aes(inv_depth, value, col = !!sym(config))) +
geom_hline(yintercept = 0) +
scale_color_brewer(palette = "Dark2") +
geom_point() +
geom_path() +
labs(y = "DIC change (PgC)") +
facet_grid(data_source ~ period, scales = "free_y")
Version | Author | Date |
---|---|---|
1aabfea | jens-daniel-mueller | 2022-07-12 |
dcant_budget_global_bias_all_decomposition <-
dcant_budget_global_bias_all_decomposition %>%
filter(estimate == "dcant") %>%
select(inv_depth, dcant_bias, contribution, !!sym(config), period) %>%
pivot_wider(names_from = contribution,
values_from = dcant_bias)
dcant_budget_global_bias_all_decomposition <-
full_join(
dcant_budget_global_bias_all_decomposition,
dcant_budget_global_bias_all_depth %>%
select(inv_depth, !!sym(config), period, mod_truth)
)
Joining, by = c("inv_depth", "MLR_basins", "period")
dcant_budget_global_bias_all_decomposition %>%
ggplot(aes(`dcant offset`, `delta C* - mod_truth`, col = !!sym(config))) +
geom_vline(xintercept = 0, col = "grey50") +
geom_hline(yintercept = 0, col = "grey50") +
geom_abline(intercept = 0, slope = 1) +
geom_point() +
coord_fixed() +
scale_color_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ period)
dcant_budget_global_bias_all_decomposition %>%
ggplot(aes(`dcant offset`, `C* prediction error`, col = !!sym(config))) +
geom_vline(xintercept = 0, col = "grey50") +
geom_hline(yintercept = 0, col = "grey50") +
geom_abline(intercept = 0, slope = 1) +
geom_point() +
coord_fixed() +
scale_color_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ period)
dcant_budget_global_bias_all_decomposition %>%
ggplot(aes(
`dcant offset`,
`C* prediction error` + `delta C* - mod_truth`,
col = !!sym(config)
)) +
geom_vline(xintercept = 0, col = "grey50") +
geom_hline(yintercept = 0, col = "grey50") +
geom_abline(intercept = 0, slope = 1) +
geom_point() +
coord_fixed() +
scale_color_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ period)
dcant_budget_global_bias_all_decomposition %>%
ggplot(aes(`dcant offset`, `C* drift`, col = !!sym(config))) +
geom_vline(xintercept = 0, col = "grey50") +
geom_hline(yintercept = 0, col = "grey50") +
geom_abline(intercept = 0, slope = 1) +
geom_point() +
coord_fixed() +
scale_color_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ period)
dcant_budget_global_bias_all_decomposition %>%
ggplot(aes(
`dcant offset` - `C* drift`,
`C* prediction error`,
col = !!sym(config)
)) +
geom_vline(xintercept = 0, col = "grey50") +
geom_hline(yintercept = 0, col = "grey50") +
geom_abline(intercept = 0, slope = 1) +
geom_point() +
coord_fixed() +
scale_color_brewer(palette = "Dark2") +
facet_grid(inv_depth ~ period)
dcant_budget_global_bias_all_decomposition %>%
ggplot(aes(
x = period,
fill = !!sym(config),
col = !!sym(config)
)) +
geom_hline(yintercept = 0) +
geom_point(
aes(y = `dcant offset`, shape = "dcant offset"),
position = position_nudge(x = -0.05),
alpha = 0.5
) +
geom_point(
aes(y = `dcant offset` - `C* drift`, shape = "dcant offset - C* drift"),
position = position_nudge(x = 0.05),
alpha = 0.5
) +
scale_color_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Dark2") +
scale_shape_manual(values = c(21,23)) +
facet_grid(inv_depth ~ .)
dcant_budget_global_bias_all_decomposition <-
dcant_budget_global_bias_all_decomposition %>%
mutate(
`dcant offset rel` = 100 * `dcant offset` / mod_truth,
`dcant offset rel corr` = 100 * (`dcant offset` - `C* drift`) / mod_truth,
`C* prediction error rel` = 100 * (`C* prediction error`) / mod_truth
)
dcant_budget_global_bias_all_decomposition %>%
ggplot(aes(
x = period,
fill = !!sym(config),
col = !!sym(config)
)) +
geom_hline(yintercept = 0) +
geom_point(
aes(y = `dcant offset rel`, shape = "dcant offset"),
position = position_nudge(x = -0.05),
alpha = 0.5
) +
geom_point(
aes(y = `dcant offset rel corr`, shape = "dcant offset - C* drift"),
position = position_nudge(x = 0.05),
alpha = 0.5
) +
scale_color_brewer(palette = "Dark2") +
scale_fill_brewer(palette = "Dark2") +
scale_shape_manual(values = c(21,23)) +
facet_grid(inv_depth ~ .)
dcant_budget_global_bias_all_decomposition <-
dcant_budget_global_bias_all_decomposition %>%
pivot_longer(-c(inv_depth:period),
names_to = "estimate",
values_to = "value")
dcant_budget_global_bias_all_decomposition %>%
group_by(inv_depth, estimate) %>%
summarise(mean = mean(value),
sd = sd(value)) %>%
ungroup() %>%
kable() %>%
kable_styling() %>%
scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth'. You can override using the
`.groups` argument.
inv_depth | estimate | mean | sd |
---|---|---|---|
100 | C* drift | 0.2033333 | 0.0740032 |
100 | C* prediction error | -0.2393333 | 0.3401014 |
100 | C* prediction error rel | -4.4153483 | 8.1142990 |
100 | dcant offset | 0.2468333 | 0.1582806 |
100 | dcant offset rel | 5.5372104 | 4.2463854 |
100 | dcant offset rel corr | 1.2451436 | 3.9621830 |
100 | delta C* - mod_truth | -0.3946667 | 0.2164184 |
100 | mod_truth | 4.7563333 | 1.7425592 |
500 | C* drift | 1.3446667 | 0.4893907 |
500 | C* prediction error | -1.2952222 | 0.9603342 |
500 | C* prediction error rel | -7.3927199 | 4.9897061 |
500 | dcant offset | 0.3857778 | 0.7326238 |
500 | dcant offset rel | 2.5613516 | 5.0780565 |
500 | dcant offset rel corr | -5.4050140 | 4.6308913 |
500 | delta C* - mod_truth | 0.3773333 | 0.1374833 |
500 | mod_truth | 16.9600000 | 6.2242462 |
1000 | C* drift | 3.1486667 | 1.1458415 |
1000 | C* prediction error | -2.9658889 | 1.6097098 |
1000 | C* prediction error rel | -12.9309922 | 5.2246033 |
1000 | dcant offset | 0.4245556 | 1.0755111 |
1000 | dcant offset rel | 2.0326474 | 5.1976306 |
1000 | dcant offset rel corr | -11.8764223 | 4.8139167 |
1000 | delta C* - mod_truth | 2.0866667 | 0.7598902 |
1000 | mod_truth | 22.7516667 | 8.3557301 |
3000 | C* drift | 3.9900000 | 1.4521475 |
3000 | C* prediction error | -2.1771111 | 1.4920166 |
3000 | C* prediction error rel | -8.4792959 | 5.2085990 |
3000 | dcant offset | 1.7448333 | 1.4352606 |
3000 | dcant offset rel | 6.9081812 | 5.6311765 |
3000 | dcant offset rel corr | -8.7359634 | 5.6104634 |
3000 | delta C* - mod_truth | 2.6026667 | 0.9469936 |
3000 | mod_truth | 25.6453333 | 9.4254881 |
10000 | C* drift | 3.3760000 | 1.2289476 |
10000 | C* prediction error | -1.0326667 | 1.8383415 |
10000 | C* prediction error rel | -3.9143573 | 7.3203530 |
10000 | dcant offset | 2.0411667 | 2.0215797 |
10000 | dcant offset rel | 7.9697268 | 7.9500201 |
10000 | dcant offset rel corr | -5.0691493 | 7.9168272 |
10000 | delta C* - mod_truth | 1.7546667 | 0.6384472 |
10000 | mod_truth | 26.0420000 | 9.5725748 |
dcant_budget_global_bias_all_decomposition %>%
group_by(inv_depth, estimate, period) %>%
summarise(mean = mean(value),
sd = sd(value)) %>%
ungroup() %>%
kable() %>%
kable_styling() %>%
scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth', 'estimate'. You can override
using the `.groups` argument.
inv_depth | estimate | period | mean | sd |
---|---|---|---|---|
100 | C* drift | 1994 - 2004 | 0.1550000 | 0.0000000 |
100 | C* drift | 1994 - 2014 | 0.3050000 | 0.0000000 |
100 | C* drift | 2004 - 2014 | 0.1500000 | 0.0000000 |
100 | C* prediction error | 1994 - 2004 | 0.1158333 | 0.2040700 |
100 | C* prediction error | 1994 - 2014 | -0.4196667 | 0.2337757 |
100 | C* prediction error | 2004 - 2014 | -0.4141667 | 0.2643909 |
100 | C* prediction error rel | 1994 - 2004 | 3.4900070 | 6.1485388 |
100 | C* prediction error rel | 1994 - 2014 | -5.8826278 | 3.2769228 |
100 | C* prediction error rel | 2004 - 2014 | -10.8534242 | 6.9284836 |
100 | dcant offset | 1994 - 2004 | 0.3498333 | 0.0589251 |
100 | dcant offset | 1994 - 2014 | 0.3418333 | 0.0626432 |
100 | dcant offset | 2004 - 2014 | 0.0488333 | 0.0847193 |
100 | dcant offset rel | 1994 - 2004 | 10.5403234 | 1.7753870 |
100 | dcant offset rel | 1994 - 2014 | 4.7916083 | 0.8780932 |
100 | dcant offset rel | 2004 - 2014 | 1.2796995 | 2.2201085 |
100 | dcant offset rel corr | 1994 - 2004 | 5.8702420 | 1.7753870 |
100 | dcant offset rel corr | 1994 - 2014 | 0.5163069 | 0.8780932 |
100 | dcant offset rel corr | 2004 - 2014 | -2.6511181 | 2.2201085 |
100 | delta C* - mod_truth | 1994 - 2004 | -0.4900000 | 0.0000000 |
100 | delta C* - mod_truth | 1994 - 2014 | -0.5910000 | 0.0000000 |
100 | delta C* - mod_truth | 2004 - 2014 | -0.1030000 | 0.0000000 |
100 | mod_truth | 1994 - 2004 | 3.3190000 | 0.0000000 |
100 | mod_truth | 1994 - 2014 | 7.1340000 | 0.0000000 |
100 | mod_truth | 2004 - 2014 | 3.8160000 | 0.0000000 |
500 | C* drift | 1994 - 2004 | 1.0250000 | 0.0000000 |
500 | C* drift | 1994 - 2014 | 2.0170000 | 0.0000000 |
500 | C* drift | 2004 - 2014 | 0.9920000 | 0.0000000 |
500 | C* prediction error | 1994 - 2004 | -0.4975000 | 0.6386714 |
500 | C* prediction error | 1994 - 2014 | -2.0165000 | 0.9823093 |
500 | C* prediction error | 2004 - 2014 | -1.3716667 | 0.6065099 |
500 | C* prediction error rel | 1994 - 2004 | -4.2358450 | 5.4378149 |
500 | C* prediction error rel | 1994 - 2014 | -7.9264937 | 3.8612786 |
500 | C* prediction error rel | 2004 - 2014 | -10.0158209 | 4.4286959 |
500 | dcant offset | 1994 - 2004 | 0.8561667 | 0.5043937 |
500 | dcant offset | 1994 - 2014 | 0.5353333 | 0.7843639 |
500 | dcant offset | 2004 - 2014 | -0.2341667 | 0.4491233 |
500 | dcant offset rel | 1994 - 2004 | 7.2896268 | 4.2945395 |
500 | dcant offset rel | 1994 - 2014 | 2.1042977 | 3.0831913 |
500 | dcant offset rel | 2004 - 2014 | -1.7098698 | 3.2794694 |
500 | dcant offset rel corr | 1994 - 2004 | -1.4374911 | 4.2945395 |
500 | dcant offset rel corr | 1994 - 2014 | -5.8241614 | 3.0831913 |
500 | dcant offset rel corr | 2004 - 2014 | -8.9533893 | 3.2794694 |
500 | delta C* - mod_truth | 1994 - 2004 | 0.2920000 | 0.0000000 |
500 | delta C* - mod_truth | 1994 - 2014 | 0.5660000 | 0.0000000 |
500 | delta C* - mod_truth | 2004 - 2014 | 0.2740000 | 0.0000000 |
500 | mod_truth | 1994 - 2004 | 11.7450000 | 0.0000000 |
500 | mod_truth | 1994 - 2014 | 25.4400000 | 0.0000000 |
500 | mod_truth | 2004 - 2014 | 13.6950000 | 0.0000000 |
1000 | C* drift | 1994 - 2004 | 2.3950000 | 0.0000000 |
1000 | C* drift | 1994 - 2014 | 4.7230000 | 0.0000000 |
1000 | C* drift | 2004 - 2014 | 2.3280000 | 0.0000000 |
1000 | C* prediction error | 1994 - 2004 | -1.8541667 | 1.2167319 |
1000 | C* prediction error | 1994 - 2014 | -4.5021667 | 1.5806612 |
1000 | C* prediction error | 2004 - 2014 | -2.5413333 | 0.5472190 |
1000 | C* prediction error rel | 1994 - 2004 | -11.8099788 | 7.7498848 |
1000 | C* prediction error rel | 1994 - 2014 | -13.1923892 | 4.6317027 |
1000 | C* prediction error rel | 2004 - 2014 | -13.7906085 | 2.9694977 |
1000 | dcant offset | 1994 - 2004 | 0.7648333 | 1.1406881 |
1000 | dcant offset | 1994 - 2014 | 0.6148333 | 1.4021001 |
1000 | dcant offset | 2004 - 2014 | -0.1060000 | 0.3816118 |
1000 | dcant offset rel | 1994 - 2004 | 4.8715499 | 7.2655294 |
1000 | dcant offset rel | 1994 - 2014 | 1.8016038 | 4.1084773 |
1000 | dcant offset rel | 2004 - 2014 | -0.5752116 | 2.0708262 |
1000 | dcant offset rel corr | 1994 - 2004 | -10.3832272 | 7.2655294 |
1000 | dcant offset rel corr | 1994 - 2014 | -12.0378781 | 4.1084773 |
1000 | dcant offset rel corr | 2004 - 2014 | -13.2081615 | 2.0708262 |
1000 | delta C* - mod_truth | 1994 - 2004 | 1.5570000 | 0.0000000 |
1000 | delta C* - mod_truth | 1994 - 2014 | 3.1310000 | 0.0000000 |
1000 | delta C* - mod_truth | 2004 - 2014 | 1.5720000 | 0.0000000 |
1000 | mod_truth | 1994 - 2004 | 15.7000000 | 0.0000000 |
1000 | mod_truth | 1994 - 2014 | 34.1270000 | 0.0000000 |
1000 | mod_truth | 2004 - 2014 | 18.4280000 | 0.0000000 |
3000 | C* drift | 1994 - 2004 | 3.0410000 | 0.0000000 |
3000 | C* drift | 1994 - 2014 | 5.9850000 | 0.0000000 |
3000 | C* drift | 2004 - 2014 | 2.9440000 | 0.0000000 |
3000 | C* prediction error | 1994 - 2004 | -1.6451667 | 1.3246916 |
3000 | C* prediction error | 1994 - 2014 | -3.3375000 | 1.6505759 |
3000 | C* prediction error | 2004 - 2014 | -1.5486667 | 0.8125798 |
3000 | C* prediction error rel | 1994 - 2004 | -9.3263416 | 7.5095894 |
3000 | C* prediction error rel | 1994 - 2014 | -8.6760424 | 4.2907764 |
3000 | C* prediction error rel | 2004 - 2014 | -7.4355035 | 3.9013816 |
3000 | dcant offset | 1994 - 2004 | 1.3966667 | 1.4623699 |
3000 | dcant offset | 1994 - 2014 | 2.5523333 | 1.7128169 |
3000 | dcant offset | 2004 - 2014 | 1.2855000 | 0.8663283 |
3000 | dcant offset rel | 1994 - 2004 | 7.9176115 | 8.2900791 |
3000 | dcant offset rel | 1994 - 2014 | 6.6349520 | 4.4525760 |
3000 | dcant offset rel | 2004 - 2014 | 6.1719800 | 4.1594406 |
3000 | dcant offset rel corr | 1994 - 2004 | -9.3216175 | 8.2900791 |
3000 | dcant offset rel corr | 1994 - 2014 | -8.9234342 | 4.4525760 |
3000 | dcant offset rel corr | 2004 - 2014 | -7.9628385 | 4.1594406 |
3000 | delta C* - mod_truth | 1994 - 2004 | 1.9330000 | 0.0000000 |
3000 | delta C* - mod_truth | 1994 - 2014 | 3.9040000 | 0.0000000 |
3000 | delta C* - mod_truth | 2004 - 2014 | 1.9710000 | 0.0000000 |
3000 | mod_truth | 1994 - 2004 | 17.6400000 | 0.0000000 |
3000 | mod_truth | 1994 - 2014 | 38.4680000 | 0.0000000 |
3000 | mod_truth | 2004 - 2014 | 20.8280000 | 0.0000000 |
10000 | C* drift | 1994 - 2004 | 2.5830000 | 0.0000000 |
10000 | C* drift | 1994 - 2014 | 5.0640000 | 0.0000000 |
10000 | C* drift | 2004 - 2014 | 2.4810000 | 0.0000000 |
10000 | C* prediction error | 1994 - 2004 | -0.7836667 | 1.9554335 |
10000 | C* prediction error | 1994 - 2014 | -1.6490000 | 2.4401269 |
10000 | C* prediction error | 2004 - 2014 | -0.6653333 | 1.0100481 |
10000 | C* prediction error rel | 1994 - 2004 | -4.3775370 | 10.9229892 |
10000 | C* prediction error rel | 1994 - 2014 | -4.2213860 | 6.2466449 |
10000 | C* prediction error rel | 2004 - 2014 | -3.1441488 | 4.7731584 |
10000 | dcant offset | 1994 - 2004 | 1.6278333 | 2.1418133 |
10000 | dcant offset | 1994 - 2014 | 2.9685000 | 2.5644361 |
10000 | dcant offset | 2004 - 2014 | 1.5271667 | 1.0850739 |
10000 | dcant offset rel | 1994 - 2004 | 9.0930250 | 11.9641006 |
10000 | dcant offset rel | 1994 - 2014 | 7.5992627 | 6.5648725 |
10000 | dcant offset rel | 2004 - 2014 | 7.2168927 | 5.1277062 |
10000 | dcant offset rel corr | 1994 - 2004 | -5.3355305 | 11.9641006 |
10000 | dcant offset rel corr | 1994 - 2014 | -5.3644113 | 6.5648725 |
10000 | dcant offset rel corr | 2004 - 2014 | -4.5075059 | 5.1277062 |
10000 | delta C* - mod_truth | 1994 - 2004 | 1.3030000 | 0.0000000 |
10000 | delta C* - mod_truth | 1994 - 2014 | 2.6320000 | 0.0000000 |
10000 | delta C* - mod_truth | 2004 - 2014 | 1.3290000 | 0.0000000 |
10000 | mod_truth | 1994 - 2004 | 17.9020000 | 0.0000000 |
10000 | mod_truth | 1994 - 2014 | 39.0630000 | 0.0000000 |
10000 | mod_truth | 2004 - 2014 | 21.1610000 | 0.0000000 |
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3
Matrix products: default
BLAS: /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] kableExtra_1.3.4 geomtextpath_0.1.0 colorspace_2.0-2 marelac_2.1.10
[5] shape_1.4.6 ggforce_0.3.3 metR_0.11.0 scico_1.3.0
[9] patchwork_1.1.1 collapse_1.7.0 forcats_0.5.1 stringr_1.4.0
[13] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1 tidyr_1.1.4
[17] tibble_3.1.6 ggplot2_3.3.5 tidyverse_1.3.1 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.2 gghalves_0.1.1 bit64_4.0.5 lubridate_1.8.0
[5] gsw_1.0-6 RColorBrewer_1.1-2 webshot_0.5.2 httr_1.4.2
[9] rprojroot_2.0.2 tools_4.1.2 backports_1.4.1 bslib_0.3.1
[13] utf8_1.2.2 R6_2.5.1 DBI_1.1.2 withr_2.4.3
[17] tidyselect_1.1.1 processx_3.5.2 bit_4.0.4 compiler_4.1.2
[21] git2r_0.29.0 textshaping_0.3.6 cli_3.1.1 rvest_1.0.2
[25] xml2_1.3.3 labeling_0.4.2 sass_0.4.0 scales_1.1.1
[29] checkmate_2.0.0 SolveSAPHE_2.1.0 callr_3.7.0 systemfonts_1.0.3
[33] digest_0.6.29 svglite_2.0.0 rmarkdown_2.11 oce_1.5-0
[37] pkgconfig_2.0.3 htmltools_0.5.2 highr_0.9 dbplyr_2.1.1
[41] fastmap_1.1.0 rlang_1.0.2 readxl_1.3.1 rstudioapi_0.13
[45] jquerylib_0.1.4 generics_0.1.1 farver_2.1.0 jsonlite_1.7.3
[49] vroom_1.5.7 magrittr_2.0.1 Rcpp_1.0.8 munsell_0.5.0
[53] fansi_1.0.2 lifecycle_1.0.1 stringi_1.7.6 whisker_0.4
[57] yaml_2.2.1 MASS_7.3-55 grid_4.1.2 parallel_4.1.2
[61] promises_1.2.0.1 crayon_1.4.2 haven_2.4.3 hms_1.1.1
[65] seacarb_3.3.0 knitr_1.37 ps_1.6.0 pillar_1.6.4
[69] reprex_2.0.1 glue_1.6.0 evaluate_0.14 getPass_0.2-2
[73] data.table_1.14.2 modelr_0.1.8 vctrs_0.3.8 tzdb_0.2.0
[77] tweenr_1.0.2 httpuv_1.6.5 cellranger_1.1.0 gtable_0.3.0
[81] polyclip_1.10-0 assertthat_0.2.1 xfun_0.29 broom_0.7.11
[85] later_1.3.0 viridisLite_0.4.0 ellipsis_0.3.2 here_1.0.1