Last updated: 2022-11-02
Checks: 7 0
Knit directory: emlr_mod_preprocessing/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version d0575c0. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: code/backup_analysis_scripts/Cant_CB_annual_all_models_backup_20220704.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/Cant_CB_annual_all_models.Rmd
) and HTML
(docs/Cant_CB_annual_all_models.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | d0575c0 | jens-daniel-mueller | 2022-11-02 | included calculation of cstar variants |
html | 297418e | jens-daniel-mueller | 2022-10-24 | Build site. |
html | 5dd2e34 | jens-daniel-mueller | 2022-09-27 | Build site. |
Rmd | fd57f09 | jens-daniel-mueller | 2022-09-27 | extract Cnat from CESM |
html | e829a11 | jens-daniel-mueller | 2022-07-05 | Build site. |
Rmd | 923e07e | jens-daniel-mueller | 2022-07-04 | rerun for all models |
html | 9f6bdf3 | jens-daniel-mueller | 2022-06-30 | Build site. |
Rmd | b4251cb | jens-daniel-mueller | 2022-06-30 | rerun with writing dissic fields |
html | 89cbb74 | jens-daniel-mueller | 2022-05-26 | Build site. |
html | 42bbb89 | jens-daniel-mueller | 2022-05-24 | Build site. |
Rmd | e82a302 | jens-daniel-mueller | 2022-05-23 | bug fixes for 5 models |
html | 40863a2 | jens-daniel-mueller | 2022-05-22 | Build site. |
Rmd | d9d4d68 | jens-daniel-mueller | 2022-05-21 | rebuild with revised output structure and all models |
# use only three basin to assign general basin mask
# ie this is not specific to the MLR fitting
basinmask <- basinmask %>%
filter(MLR_basins == "2") %>%
select(lat, lon, basin_AIP)
models <- list.files(path_cmorized)
models <-
models[!str_detect(models, pattern = "\\.t|\\.z")]
models <-
models[str_detect(
models,
pattern = c(
"CESM|CNRM|EC-Earth3|FESOM_REcoM_LR|MOM6-Princeton|MRI-ESM2-1|NorESM-OC1.2|ORCA025-GEOMAR|ORCA1-LIM3-PISCES|planktom12"
)
)]
# depth levels not available
models <-
models[!str_detect(models, pattern = "CNRM")]
# files chunked into decades
models <-
models[!str_detect(models, pattern = "ORCA025-GEOMAR")]
# no run D
models <-
models[!str_detect(models, pattern = "MOM6-Princeton")]
# for loop across variables
# 3d variables
variables <-
c("so", "thetao", "dissic", "talk", "po4", "no3")
# models <- models[7]
for (i_model in models) {
# i_model <- models[4]
print(i_model)
for (i_model_ID in c("C", "B")) {
# i_model_ID <- c("C", "B")[1]
print(i_model_ID)
variables_available <-
list.files(
path = paste0(path_cmorized, i_model),
pattern = paste0("_", i_model_ID, "_")
)
variables_available <-
str_split(variables_available,
pattern = "_",
simplify = TRUE)[, 1]
variables_available <-
variables_available[variables_available %in% variables]
variables_available <- unique(variables_available)
print(variables_available)
for (i_variable in variables_available) {
# i_variable <- variables_available[2]
# read list of all files
file <-
list.files(
path = paste0(path_cmorized, i_model),
pattern = paste0(i_variable, "_")
)
if (i_model == "MRI-ESM2-1_3D_ALL_v20220502" &
i_model_ID == "B" &
i_variable %in% c("so", "thetao", "talk", "po4", "no3")) {
file <-
file[str_detect(file, pattern = paste0("_", "C", "_"))]
} else {
file <-
file[str_detect(file, pattern = paste0("_", i_model_ID, "_"))]
}
print(file)
# read in data
if (i_model == "NorESM-OC1.2_3D_ALL_v20211125") {
variable_data <-
tidync::tidync(paste(paste0(path_cmorized, i_model),
file,
sep = "/")) %>%
tidync::hyper_tibble() %>%
mutate(time = as.Date(time, origin = "1980-01-01"))
} else if (i_model %in% c("EC-Earth3_3D_ALL_v20220323",
"CNRM-ESM2-1_3D_ALL_v20211208")) {
variable_data <-
read_ncdf(paste(paste0(path_cmorized, i_model),
file,
sep = "/"),
make_units = FALSE,
make_time = FALSE)
} else {
variable_data <-
read_ncdf(paste(paste0(path_cmorized, i_model),
file,
sep = "/"),
make_units = FALSE)
}
# convert to tibble
variable_data_tibble <- variable_data %>%
as_tibble()
# remove open link to nc file
rm(variable_data)
# remove na values
variable_data_tibble <-
variable_data_tibble %>%
filter(!is.na(!!sym(i_variable)))
# sort(unique(variable_data_tibble$lev))
# sort(unique(variable_data_tibble$lon))
if (i_model == "CESM-ETHZ_3D_ALL_v20211122") {
variable_data_tibble <- variable_data_tibble %>%
rename(time = time_ann) %>%
mutate(depth = as.numeric(depth))
}
if (i_model == "CNRM-ESM2-1_3D_ALL_v20211208") {
variable_data_tibble <- variable_data_tibble %>%
rename(depth = lev) %>%
group_by(time) %>%
mutate(year = as.character(1979 + cur_group_id())) %>%
ungroup()
variable_data_tibble <- variable_data_tibble %>%
mutate(time = as.Date(year, format = "%Y")) %>%
select(-year)
}
if (i_model == "EC-Earth3_3D_ALL_v20220323") {
variable_data_tibble <- variable_data_tibble %>%
mutate(time = as.Date(time, origin = "1850-06-01"))
}
if (i_model == "FESOM_REcoM_LR_3D_all_v20211119") {
variable_data_tibble <- variable_data_tibble %>%
rename(
lat = Lat,
lon = Lon,
depth = Depth,
time = Time
) %>%
mutate(time = as.Date(time, origin = '1980-01-01'),
depth = as.numeric(depth))
}
if (i_model == "MOM6-Princeton_3D_ALL_v20220125") {
variable_data_tibble <- variable_data_tibble %>%
rename(depth = z_l)
}
if (i_model == "MRI-ESM2-1_3D_ALL_v20220502") {
variable_data_tibble <- variable_data_tibble %>%
rename(depth = lev)
}
if (i_model == "planktom12_3d_all_v20220404") {
variable_data_tibble <- variable_data_tibble %>%
rename(
lon = LONGITUDE,
lat = LATITUDE,
depth = DEPTH,
time = TIME
) %>%
mutate(depth = as.numeric(depth))
}
if (i_model == "planktom12_3d_all_v20220404" &
i_variable == "po4") {
variable_data_tibble <-
variable_data_tibble %>%
mutate(po4 = po4 / 100)
}
variable_data_tibble <- variable_data_tibble %>%
mutate(time = year(time))
if (exists("annual")) {
annual <- left_join(annual, variable_data_tibble)
}
if (!exists("annual")) {
annual <- variable_data_tibble
}
rm(variable_data_tibble)
}
if (i_model == "FESOM_REcoM_LR_3D_all_v20211119") {
annual <- annual %>%
mutate(po4 = no3 / 16)
}
if (i_model == "planktom12_3d_all_v20220404") {
annual <- annual %>%
mutate(no3 = po4 * 16)
}
if (i_model == "MRI-ESM2-1_3D_ALL_v20220502" &
i_model_ID == "B") {
annual <- right_join(annual,
CB_annual %>%
select(-dissic))
}
annual <- annual %>%
mutate(model_ID = i_model_ID)
if (exists("CB_annual")) {
CB_annual <- bind_rows(CB_annual, annual)
}
if (!exists("CB_annual")) {
CB_annual <- annual
}
rm(annual)
}
# harmonize column names and coordinates
CB_annual <- CB_annual %>%
select(
year = time,
lon,
lat,
depth,
sal = so,
theta = thetao,
dissic,
talk,
phosphate = po4,
nitrate = no3,
model_ID
) %>%
mutate(lon = if_else(lon < 20, lon + 360, lon))
# calculate model temperature
CB_annual <- CB_annual %>%
mutate(temp = gsw_pt_from_t(
SA = sal,
t = theta,
p = 10.1325,
p_ref = depth
))
# unit transfer from mol/m3 to µmol/kg
CB_annual <- CB_annual %>%
mutate(
rho = gsw_pot_rho_t_exact(
SA = sal,
t = temp,
p = depth,
p_ref = 10.1325
),
dissic = dissic * (1e+6 / rho),
talk = talk * (1e+6 / rho),
phosphate = phosphate * (1e+6 / rho),
nitrate = nitrate * (1e+6 / rho)
)
CB_annual <- CB_annual %>%
select(-c(sal, temp, theta, rho))
# sort(unique(CB_annual$depth))
# sort(unique(CB_annual$lon))
CB_annual <- CB_annual %>%
mutate(depth = round(depth))
## Apply basin mask
CB_annual <- inner_join(CB_annual, basinmask)
# calculate cstar field
CB_annual_cstar <- CB_annual
params_local <- lst(rCP = 117,
rNP = 16)
CB_annual_cstar <- CB_annual_cstar %>%
mutate(
cstar_nitrate_talk = b_cstar_nitrate_talk(
tco2 = dissic,
nitrate = nitrate,
talk = talk
),
cstar_phosphate_talk = b_cstar_phosphate_talk(
tco2 = dissic,
phosphate = phosphate,
talk = talk
),
cstar_nitrate = b_cstar_nitrate(
tco2 = dissic,
nitrate = nitrate
),
cstar_phosphate = b_cstar_phosphate(
tco2 = dissic,
phosphate = phosphate
),
cstar_talk = b_cstar_talk(
tco2 = dissic,
talk = talk
)
)
rm(params_local)
# Calculate Cant fields
CB_annual <- CB_annual %>%
select(year, lon, lat, depth, dissic, model_ID, basin_AIP)
CB_annual <- CB_annual %>% pivot_wider(names_from = model_ID,
values_from = dissic)
CB_annual_dissic <- CB_annual
CB_annual <- CB_annual %>%
mutate(tcant = C - B) %>%
select(-c(C, B))
# Remove 3D_all from model name
i_model <- str_remove(i_model, "3D_ALL_|3D_all_|3d_all_")
# write annual Cant files
for (i_year in unique(CB_annual$year)) {
# i_year = unique(CB_annual$year)[1]
CB_annual %>%
filter(year == i_year) %>%
write_csv(
paste0(
path_preprocessing,
"Cant_CB_annual_all_models/",
i_year,
"_",
i_model,
".csv"
)
)
CB_annual_dissic %>%
filter(year == i_year) %>%
write_csv(
paste0(
path_preprocessing,
"Cant_CB_annual_all_models/dissic/",
i_year,
"_",
i_model,
".csv"
)
)
CB_annual_cstar %>%
filter(year == i_year,
model_ID == "C") %>%
write_csv(
paste0(
path_preprocessing,
"Cant_CB_annual_all_models/Cstar_C_annual_all_models/",
i_year,
"_",
i_model,
".csv"
)
)
CB_annual_cstar %>%
filter(year == i_year,
model_ID == "B") %>%
write_csv(
paste0(
path_preprocessing,
"Cant_CB_annual_all_models/Cstar_B_annual_all_models/",
i_year,
"_",
i_model,
".csv"
)
)
}
rm(CB_annual)
}
[1] "CESM-ETHZ_3D_ALL_v20211122"
[1] "C"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_CESM-ETHZ_C_1_gr_1980-2018_v20211122.nc"
[1] "no3_CESM-ETHZ_C_1_gr_1980-2018_v20211122.nc"
[1] "po4_CESM-ETHZ_C_1_gr_1980-2018_v20211122.nc"
[1] "so_CESM-ETHZ_C_1_gr_1980-2018_v20211122.nc"
[1] "talk_CESM-ETHZ_C_1_gr_1980-2018_v20211122.nc"
[1] "thetao_CESM-ETHZ_C_1_gr_1980-2018_v20211122.nc"
[1] "B"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_CESM-ETHZ_B_1_gr_1980-2018_v20211122.nc"
[1] "no3_CESM-ETHZ_B_1_gr_1980-2018_v20211122.nc"
[1] "po4_CESM-ETHZ_B_1_gr_1980-2018_v20211122.nc"
[1] "so_CESM-ETHZ_B_1_gr_1980-2018_v20211122.nc"
[1] "talk_CESM-ETHZ_B_1_gr_1980-2018_v20211122.nc"
[1] "thetao_CESM-ETHZ_B_1_gr_1980-2018_v20211122.nc"
[1] "EC-Earth3_3D_ALL_v20220323"
[1] "C"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_EC-Earth3_C_1_gr_1980-2018_v20220323.nc"
[1] "no3_EC-Earth3_C_1_gr_1980-2018_v20220323.nc"
[1] "po4_EC-Earth3_C_1_gr_1980-2018_v20220323.nc"
[1] "so_EC-Earth3_C_1_gr_1980-2018_v20220323.nc"
[1] "talk_EC-Earth3_C_1_gr_1980-2018_v20220323.nc"
[1] "thetao_EC-Earth3_C_1_gr_1980-2018_v20220323.nc"
[1] "B"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_EC-Earth3_B_1_gr_1980-2018_v20220323.nc"
[1] "no3_EC-Earth3_B_1_gr_1980-2018_v20220323.nc"
[1] "po4_EC-Earth3_B_1_gr_1980-2018_v20220323.nc"
[1] "so_EC-Earth3_B_1_gr_1980-2018_v20220323.nc"
[1] "talk_EC-Earth3_B_1_gr_1980-2018_v20220323.nc"
[1] "thetao_EC-Earth3_B_1_gr_1980-2018_v20220323.nc"
[1] "FESOM_REcoM_LR_3D_all_v20211119"
[1] "C"
[1] "dissic" "no3" "so" "talk" "thetao"
[1] "dissic_FESOM_REcoM_LR_C_1_gr_1980-2018_v20211119.nc"
[1] "no3_FESOM_REcoM_LR_C_1_gr_1980-2018_v20211119.nc"
[1] "so_FESOM_REcoM_LR_C_1_gr_1980-2018_v20211119.nc"
[1] "talk_FESOM_REcoM_LR_C_1_gr_1980-2018_v20211119.nc"
[1] "thetao_FESOM_REcoM_LR_C_1_gr_1980-2018_v20211119.nc"
[1] "B"
[1] "dissic" "no3" "so" "talk" "thetao"
[1] "dissic_FESOM_REcoM_LR_B_1_gr_1980-2018_v20211119.nc"
[1] "no3_FESOM_REcoM_LR_B_1_gr_1980-2018_v20211119.nc"
[1] "so_FESOM_REcoM_LR_B_1_gr_1980-2018_v20211119.nc"
[1] "talk_FESOM_REcoM_LR_B_1_gr_1980-2018_v20211119.nc"
[1] "thetao_FESOM_REcoM_LR_B_1_gr_1980-2018_v20211119.nc"
[1] "MRI-ESM2-1_3D_ALL_v20220502"
[1] "C"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_MRI-ESM2-1_C_1_gr_1980-2018_v20220502.nc"
[1] "no3_MRI-ESM2-1_C_1_gr_1980-2018_v20220502.nc"
[1] "po4_MRI-ESM2-1_C_1_gr_1980-2018_v20220502.nc"
[1] "so_MRI-ESM2-1_C_1_gr_1980-2018_v20220502.nc"
[1] "talk_MRI-ESM2-1_C_1_gr_1980-2018_v20220502.nc"
[1] "thetao_MRI-ESM2-1_C_1_gr_1980-2018_v20220502.nc"
[1] "B"
[1] "dissic"
[1] "dissic_MRI-ESM2-1_B_1_gr_1980-2018_v20220502.nc"
[1] "NorESM-OC1.2_3D_ALL_v20211125"
[1] "C"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_NorESM-OC1.2_C_1_gr_1980-2018_v20211125.nc"
[1] "no3_NorESM-OC1.2_C_1_gr_1980-2018_v20211125.nc"
[1] "po4_NorESM-OC1.2_C_1_gr_1980-2018_v20211125.nc"
[1] "so_NorESM-OC1.2_C_1_gr_1980-2018_v20211125.nc"
[1] "talk_NorESM-OC1.2_C_1_gr_1980-2018_v20211125.nc"
[1] "thetao_NorESM-OC1.2_C_1_gr_1980-2018_v20211125.nc"
[1] "B"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_NorESM-OC1.2_B_1_gr_1980-2018_v20211125.nc"
[1] "no3_NorESM-OC1.2_B_1_gr_1980-2018_v20211125.nc"
[1] "po4_NorESM-OC1.2_B_1_gr_1980-2018_v20211125.nc"
[1] "so_NorESM-OC1.2_B_1_gr_1980-2018_v20211125.nc"
[1] "talk_NorESM-OC1.2_B_1_gr_1980-2018_v20211125.nc"
[1] "thetao_NorESM-OC1.2_B_1_gr_1980-2018_v20211125.nc"
[1] "ORCA1-LIM3-PISCES_3D_ALL_v20211215"
[1] "C"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_ORCA1-LIM3-PISCES_C_1_gr_1980-2018_v20211215.nc"
[1] "no3_ORCA1-LIM3-PISCES_C_1_gr_1980-2018_v20211215.nc"
[1] "po4_ORCA1-LIM3-PISCES_C_1_gr_1980-2018_v20211215.nc"
[1] "so_ORCA1-LIM3-PISCES_C_1_gr_1980-2018_v20211215.nc"
[1] "talk_ORCA1-LIM3-PISCES_C_1_gr_1980-2018_v20211215.nc"
[1] "thetao_ORCA1-LIM3-PISCES_C_1_gr_1980-2018_v20211215.nc"
[1] "B"
[1] "dissic" "no3" "po4" "so" "talk" "thetao"
[1] "dissic_ORCA1-LIM3-PISCES_B_1_gr_1980-2018_v20211215.nc"
[1] "no3_ORCA1-LIM3-PISCES_B_1_gr_1980-2018_v20211215.nc"
[1] "po4_ORCA1-LIM3-PISCES_B_1_gr_1980-2018_v20211215.nc"
[1] "so_ORCA1-LIM3-PISCES_B_1_gr_1980-2018_v20211215.nc"
[1] "talk_ORCA1-LIM3-PISCES_B_1_gr_1980-2018_v20211215.nc"
[1] "thetao_ORCA1-LIM3-PISCES_B_1_gr_1980-2018_v20211215.nc"
[1] "planktom12_3d_all_v20220404"
[1] "C"
[1] "dissic" "po4" "so" "talk" "thetao"
[1] "dissic_PlankTOM12_C_1_gr_1980-2018_v20220404.nc"
[1] "po4_PlankTOM12_C_1_gr_1980-2018_v20220404.nc"
[1] "so_PlankTOM12_C_1_gr_1980-2018_v20220404.nc"
[1] "talk_PlankTOM12_C_1_gr_1980-2018_v20220404.nc"
[1] "thetao_PlankTOM12_C_1_gr_1980-2018_v20220404.nc"
[1] "B"
[1] "dissic" "po4" "so" "talk" "thetao"
[1] "dissic_PlankTOM12_B_1_gr_1980-2018_v20220404.nc"
[1] "po4_PlankTOM12_B_1_gr_1980-2018_v20220404.nc"
[1] "so_PlankTOM12_B_1_gr_1980-2018_v20220404.nc"
[1] "talk_PlankTOM12_B_1_gr_1980-2018_v20220404.nc"
[1] "thetao_PlankTOM12_B_1_gr_1980-2018_v20220404.nc"
for (i_model in models) {
# i_model <- models[1]
print(i_model)
for (i_year in c("1994", "2004", "2014")) {
# i_year = "1994"
cant_year <-
read_csv(paste0(path_preprocessing,
"Cant_CB_annual_all_models/",
i_year,
"_",
str_remove(i_model, "3D_ALL_|3D_all_|3d_all_"),
".csv"))
cant_year <- cant_year %>%
mutate(model = i_model)
if (exists("tcant")) {
tcant <- bind_rows(tcant, cant_year)
}
if (!exists("tcant")) {
tcant <- cant_year
}
}
}
[1] "CESM-ETHZ_3D_ALL_v20211122"
[1] "EC-Earth3_3D_ALL_v20220323"
[1] "FESOM_REcoM_LR_3D_all_v20211119"
[1] "MRI-ESM2-1_3D_ALL_v20220502"
[1] "NorESM-OC1.2_3D_ALL_v20211125"
[1] "ORCA1-LIM3-PISCES_3D_ALL_v20211215"
[1] "planktom12_3d_all_v20220404"
tcant <- tcant %>%
# head(10) %>%
arrange(year) %>%
group_by(model, lon, lat, depth, basin_AIP) %>%
mutate(dcant = tcant - lag(tcant),
eras = paste(year, "-" , lag(year))) %>%
ungroup()
tcant <- tcant %>%
rename(data_source = model)
tcant_zonal <- tcant %>%
select(-year) %>%
filter(!is.na(dcant)) %>%
group_by(data_source, eras) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
select(-data) %>%
unnest(zonal)
tcant_zonal %>%
filter(depth <= params_global$inventory_depth_standard) %>%
group_by(basin_AIP) %>%
group_split() %>%
head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "dcant_mean",
plot_slabs = "n",
subtitle_text = .x$basin_AIP
) +
facet_grid(data_source ~ eras)
)
[[1]]
tcant_zonal %>%
filter(depth <= params_global$inventory_depth_standard) %>%
group_by(basin_AIP) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "tcant_mean",
plot_slabs = "n",
subtitle_text = .x$basin_AIP,
breaks = c(-Inf,seq(0,80,10), Inf)
) +
facet_grid(data_source ~ eras)
)
[[1]]
[[2]]
[[3]]
dcant_inv <- tcant %>%
select(-year) %>%
filter(!is.na(dcant)) %>%
mutate(dcant_pos = 0) %>%
group_by(data_source, eras) %>%
nest() %>%
mutate(inv = map(.x = data, ~ m_dcant_inv(.x))) %>%
select(-data) %>%
unnest(inv)
dcant_inv %>%
filter(inv_depth == params_global$inventory_depth_standard) %>%
p_map_cant_inv(var = "dcant",
subtitle_text = "for predefined integration depths") +
facet_grid(data_source ~ eras)
# this is just a work around, because the function is designed to calculate cant inventories, but not cant_total inventories
tcant_total_inv <- m_cant_inv(
tcant %>%
select(-cant_pos) %>%
rename(cant_pos = cant_1994))
p_map_cant_inv(tcant_total_inv %>% filter(inv_depth == 3000),
breaks = seq(0,100,10),
subtitle_text = "Cant total in 1994")
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3
Matrix products: default
BLAS: /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.8.0 gsw_1.0-6 stars_0.5-5 sf_1.0-5
[5] abind_1.4-5 tidync_0.2.4 geomtextpath_0.1.0 colorspace_2.0-2
[9] marelac_2.1.10 shape_1.4.6 ggforce_0.3.3 metR_0.11.0
[13] scico_1.3.0 patchwork_1.1.1 collapse_1.7.0 forcats_0.5.1
[17] stringr_1.4.0 dplyr_1.0.7 purrr_0.3.4 readr_2.1.1
[21] tidyr_1.1.4 tibble_3.1.6 ggplot2_3.3.5 tidyverse_1.3.1
[25] workflowr_1.7.0
loaded via a namespace (and not attached):
[1] ellipsis_0.3.2 class_7.3-20 rprojroot_2.0.2 fs_1.5.2
[5] rstudioapi_0.13 proxy_0.4-26 farver_2.1.0 bit64_4.0.5
[9] fansi_1.0.2 xml2_1.3.3 ncdf4_1.19 knitr_1.37
[13] polyclip_1.10-0 jsonlite_1.7.3 broom_0.7.11 dbplyr_2.1.1
[17] compiler_4.1.2 httr_1.4.2 backports_1.4.1 assertthat_0.2.1
[21] fastmap_1.1.0 cli_3.1.1 later_1.3.0 tweenr_1.0.2
[25] htmltools_0.5.2 tools_4.1.2 gtable_0.3.0 glue_1.6.0
[29] Rcpp_1.0.8 cellranger_1.1.0 jquerylib_0.1.4 RNetCDF_2.5-2
[33] vctrs_0.3.8 lwgeom_0.2-8 xfun_0.29 ps_1.6.0
[37] rvest_1.0.2 lifecycle_1.0.1 ncmeta_0.3.0 oce_1.5-0
[41] getPass_0.2-2 MASS_7.3-55 scales_1.1.1 vroom_1.5.7
[45] hms_1.1.1 promises_1.2.0.1 parallel_4.1.2 yaml_2.2.1
[49] sass_0.4.0 stringi_1.7.6 highr_0.9 e1071_1.7-9
[53] checkmate_2.0.0 rlang_1.0.2 pkgconfig_2.0.3 systemfonts_1.0.3
[57] evaluate_0.14 SolveSAPHE_2.1.0 labeling_0.4.2 bit_4.0.4
[61] processx_3.5.2 tidyselect_1.1.1 seacarb_3.3.0 magrittr_2.0.1
[65] R6_2.5.1 generics_0.1.1 DBI_1.1.2 pillar_1.6.4
[69] haven_2.4.3 whisker_0.4 withr_2.4.3 units_0.7-2
[73] modelr_0.1.8 crayon_1.4.2 KernSmooth_2.23-20 utf8_1.2.2
[77] tzdb_0.2.0 rmarkdown_2.11 grid_4.1.2 readxl_1.3.1
[81] isoband_0.2.5 data.table_1.14.2 callr_3.7.0 git2r_0.29.0
[85] reprex_2.0.1 digest_0.6.29 classInt_0.4-3 httpuv_1.6.5
[89] textshaping_0.3.6 munsell_0.5.0 viridisLite_0.4.0 bslib_0.3.1