Last updated: 2022-10-24
Checks: 7 0
Knit directory: emlr_mod_preprocessing/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version e855cad. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: code/backup_analysis_scripts/Cant_CB_annual_all_models_backup_20220704.Rmd
Unstaged changes:
Modified: code/Workflowr_project_managment.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/GLODAP_subset_A_annual_all_models.Rmd
) and HTML
(docs/GLODAP_subset_A_annual_all_models.html
) files. If
you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table
below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | e855cad | jens-daniel-mueller | 2022-10-23 | rerun incl Sea of Japan |
html | 395be90 | jens-daniel-mueller | 2022-10-11 | Build site. |
Rmd | edd24c2 | jens-daniel-mueller | 2022-10-10 | rerun subsetting all models |
html | 1705342 | jens-daniel-mueller | 2022-10-10 | Build site. |
Rmd | 741c386 | jens-daniel-mueller | 2022-10-10 | revised plots |
html | e08317d | jens-daniel-mueller | 2022-10-10 | Build site. |
Rmd | 9e6f98a | jens-daniel-mueller | 2022-10-10 | subset ORCA-GEOMAR and CNRM |
html | cea25e3 | jens-daniel-mueller | 2022-10-10 | Build site. |
Rmd | 284139c | jens-daniel-mueller | 2022-10-10 | subset ORCA-GEOMAR and CNRM |
html | e829a11 | jens-daniel-mueller | 2022-07-05 | Build site. |
Rmd | 923e07e | jens-daniel-mueller | 2022-07-04 | rerun for all models |
html | 9fdecac | jens-daniel-mueller | 2022-06-29 | Build site. |
Rmd | 55a3fb6 | jens-daniel-mueller | 2022-06-29 | rerun with writing dissic fields |
html | 89cbb74 | jens-daniel-mueller | 2022-05-26 | Build site. |
Rmd | 379a012 | jens-daniel-mueller | 2022-05-26 | rerun for all models |
html | 9e85627 | jens-daniel-mueller | 2022-05-24 | Build site. |
Rmd | 30f99f7 | jens-daniel-mueller | 2022-05-24 | rerun only for planktom12 with factor /100 for po4 |
html | 42bbb89 | jens-daniel-mueller | 2022-05-24 | Build site. |
Rmd | e82a302 | jens-daniel-mueller | 2022-05-23 | bug fixes for 5 models |
html | 40863a2 | jens-daniel-mueller | 2022-05-22 | Build site. |
html | 2319f2e | jens-daniel-mueller | 2022-05-21 | Build site. |
Rmd | aa9a894 | jens-daniel-mueller | 2022-05-21 | rebuild with revised output structure and all models |
html | 8cfec6a | jens-daniel-mueller | 2022-05-17 | Build site. |
Rmd | 71c48ae | jens-daniel-mueller | 2022-05-17 | write files with betaD included |
html | 1507d44 | jens-daniel-mueller | 2022-05-16 | Build site. |
Rmd | e29c6c7 | jens-daniel-mueller | 2022-05-16 | revise pdf plot output |
html | 0dd6813 | jens-daniel-mueller | 2022-05-15 | Build site. |
Rmd | 1e98fee | jens-daniel-mueller | 2022-05-15 | included more models excp. planktom12 |
html | 16356ff | jens-daniel-mueller | 2022-05-14 | Build site. |
Rmd | 7e3794d | jens-daniel-mueller | 2022-05-14 | included more models |
html | 26d8b1d | jens-daniel-mueller | 2022-05-13 | Build site. |
html | df15df5 | jens-daniel-mueller | 2022-05-12 | Build site. |
Rmd | b1c9920 | jens-daniel-mueller | 2022-05-12 | read data from all models and write individual files |
html | 06054b2 | jens-daniel-mueller | 2022-05-10 | Build site. |
Rmd | d43e8c0 | jens-daniel-mueller | 2022-05-10 | rerun all with multi model subsetting |
path_GLODAP_preprocessing <-
paste(path_root, "/observations/preprocessing/", sep = "")
path_cmorized <-
"/nfs/kryo/work/updata/reccap2/Models/3D_ALL/"
path_preprocessing <-
paste0(path_root, "/model/preprocessing/GLODAP_subset_A_all_models/")
# use only three basin to assign general basin mask
# ie this is not specific to the MLR fitting
basinmask <- basinmask %>%
filter(MLR_basins == "2") %>%
select(lat, lon, basin_AIP)
GLODAP <-
read_csv(paste(path_GLODAP_preprocessing,
"GLODAPv2.2021_preprocessed.csv",
sep = ""))
GLODAP <- GLODAP %>%
mutate(month = month(date))
GLODAP <- GLODAP %>%
filter(year <= 2019)
Here we subset cmorized (1x1) data from the model with variable forcing, according to the presence of GLODAP observations in a previously cleaned file.
Besides, Model results are given in [mol m-3], whereas GLODAP data are in [µmol kg-1]. This refers to the variables:
For comparison, model results were converted from [mol m-3] to [µmol kg-1]
# set name of model to be subsetted
model_ID <- "A"
# for loop across variables
variables <-
c("so", "thetao", "dissic", "talk", "o2", "no3", "po4", "si")
models <- list.files(path_cmorized)
models <-
models[!str_detect(models, pattern = "\\.t|\\.z")]
models <-
models[str_detect(
models,
pattern = c(
"CESM|CNRM|EC-Earth3|FESOM_REcoM_LR|MOM6-Princeton|MRI-ESM2-1|NorESM-OC1.2|ORCA025-GEOMAR|ORCA1-LIM3-PISCES|planktom12"
)
)]
# models <- models[c(2,8)]
for (i_model in models) {
# i_model <- models[8]
print(i_model)
variables_available <-
list.files(path = paste0(path_cmorized, i_model),
pattern = paste0("_", model_ID, "_"))
variables_available <-
str_split(variables_available,
pattern = "_",
simplify = TRUE)[, 1]
variables_available <-
variables_available[variables_available %in% variables]
variables_available <- unique(variables_available)
GLODAP_joined <- GLODAP
for (i_variable in variables_available) {
# i_variable <- variables_available[1]
# read list of all files
file <-
list.files(path = paste0(path_cmorized, i_model),
pattern = paste0(i_variable, "_"))
file <-
file[str_detect(file, pattern = paste0("_", model_ID, "_"))]
print(file)
# read in data
if (i_model == "NorESM-OC1.2_3D_ALL_v20211125") {
variable_data <-
tidync::tidync(paste(paste0(path_cmorized, i_model),
file,
sep = "/")) %>%
tidync::hyper_tibble() %>%
mutate(time = as.Date(time, origin = "1980-01-01"))
} else if (i_model %in% c("EC-Earth3_3D_ALL_v20220323",
"CNRM-ESM2-1_3D_ALL_v20211208")) {
variable_data <-
read_ncdf(paste(paste0(path_cmorized, i_model),
file,
sep = "/"),
make_units = FALSE,
make_time = FALSE)
} else if (i_model %in% c("ORCA025-GEOMAR_3D_ALL_v20210804")) {
for (i_file in file) {
# i_file <- file[1]
temp <-
read_ncdf(paste(paste0(path_cmorized, i_model),
i_file,
sep = "/"),
make_units = FALSE)
temp_dates <-
read_stars(paste(paste0(path_cmorized, i_model),
i_file,
sep = "/"),
make_units = FALSE)
temp_dates <- st_get_dimension_values(temp_dates, "time")
temp <-
st_set_dimensions(temp,
"time",
values = temp_dates)
if (exists("variable_data")) {
variable_data <- c(variable_data, temp)
}
if (!exists("variable_data")) {
variable_data <- temp
}
rm(temp, temp_dates)
}
} else {
variable_data <-
read_ncdf(paste(paste0(path_cmorized, i_model),
file,
sep = "/"),
make_units = FALSE)
}
if (i_model == "CNRM-ESM2-1_3D_ALL_v20211208") {
CNRM_depth <-
read_ncdf(
paste(
paste0(path_cmorized, i_model),
"depth_CNRM-ESM2-1_1_gr_1980-2018_v20211208.nc",
sep = "/"
),
make_units = FALSE,
make_time = FALSE
) %>%
as_tibble()
CNRM_depth <- CNRM_depth %>%
distinct(lev) %>%
arrange(lev) %>%
rename(depth = lev) %>%
pull()
variable_data <-
st_set_dimensions(variable_data,
"lev",
values = CNRM_depth,
names = "depth")
variable_data <-
st_set_dimensions(variable_data,
"time",
values = ymd(1980:2018, truncated = 2L))
# CNRM_depth %>%
# slice_sample(n = 1e4) %>%
# ggplot(aes(lev, depth)) +
# geom_point(alpha = 0.3) +
# labs(title = "depth_CNRM-ESM2-1_1_gr_1980-2018_v20211208.nc",
# subtitle = "random sample of 1000 data points")
#
# CNRM_depth %>%
# filter(lev == unique(CNRM_depth$lev)[70]) %>%
# ggplot(aes(lon, lat, fill = depth)) +
# geom_tile() +
# scale_fill_viridis_c(direction = -1) +
# coord_quickmap(expand = 0) +
# labs(title = "depth_CNRM-ESM2-1_1_gr_1980-2018_v20211208.nc",
# subtitle = "lev == 4787.702 (position 70)")
}
# convert to tibble
variable_data_tibble <- variable_data %>%
as_tibble()
# remove open link to nc file
rm(variable_data)
# remove na values
variable_data_tibble <-
variable_data_tibble %>%
filter(!is.na(!!sym(i_variable)))
if (i_model == "CESM-ETHZ_3D_ALL_v20211122") {
variable_data_tibble <- variable_data_tibble %>%
rename(time = time_ann)
}
if (i_model == "EC-Earth3_3D_ALL_v20220323") {
variable_data_tibble <- variable_data_tibble %>%
mutate(time = as.Date(time, origin = "1850-06-01"))
}
if (i_model == "FESOM_REcoM_LR_3D_all_v20211119") {
variable_data_tibble <- variable_data_tibble %>%
rename(
lat = Lat,
lon = Lon,
depth = Depth,
time = Time
) %>%
mutate(time = as.Date(time, origin = '1980-01-01'))
}
if (i_model == "MOM6-Princeton_3D_ALL_v20220125") {
variable_data_tibble <- variable_data_tibble %>%
rename(depth = z_l)
}
if (i_model == "MRI-ESM2-1_3D_ALL_v20220502") {
variable_data_tibble <- variable_data_tibble %>%
rename(depth = lev)
}
if (i_model == "planktom12_3d_all_v20220404") {
variable_data_tibble <- variable_data_tibble %>%
rename(lon = LONGITUDE,
lat = LATITUDE,
depth = DEPTH,
time = TIME)
}
# harmonize longitudes
variable_data_tibble <- variable_data_tibble %>%
mutate(lon = if_else(lon < 20, lon + 360, lon))
# only consider model grids within basinmask
variable_data_tibble <-
inner_join(variable_data_tibble, basinmask) %>%
select(-basin_AIP)
# mutate variables
variable_data_tibble <- variable_data_tibble %>%
mutate(year = year(time)) %>%
select(-time)
if (i_model == "MRI-ESM2-1_3D_ALL_v20220502" &
i_variable == "si") {
variable_data_tibble <-
crossing(variable_data_tibble %>%
select(-year),
year = seq(1980, 2018, 1))
}
if (i_model == "planktom12_3d_all_v20220404" &
i_variable == "po4") {
variable_data_tibble <-
variable_data_tibble %>%
mutate(po4 = po4 / 100)
}
# for loop across years
years <- unique(variable_data_tibble$year)
years <- years[years %in% (unique(GLODAP$year))]
for (i_year in years) {
# i_year <- years[1]
print(i_year)
# select GLODAP data for that year
GLODAP_year <- GLODAP %>%
filter(year == i_year)
# create lat x lon grid of observations
Glodap_year_grid_horizontal <- GLODAP_year %>%
distinct(lat, lon)
# create lat x lon x depth grid of observations
Glodap_year_grid_depth <- GLODAP_year %>%
distinct(lat, lon, depth)
# select GLODAP data for that year
variable_data_tibble_year <- variable_data_tibble %>%
filter(year == i_year)
# calculate model summary stats
stats <- variable_data_tibble_year %>%
pull(!!sym(i_variable)) %>%
summary()
stats <- c(year = i_year, variable = i_variable, stats)
if (exists("stats_summary")) {
stats_summary <- bind_rows(stats_summary, stats)
}
if (!exists("stats_summary")) {
stats_summary <- stats
}
rm(stats)
# subset model at lat x lon grid of observations
model_grid_horizontal <-
inner_join(Glodap_year_grid_horizontal,
variable_data_tibble_year)
# join model and lat x lon x depth grid of observations
model_obs <-
full_join(model_grid_horizontal, Glodap_year_grid_depth)
# calculate nr of observations per lat x lon grid
model_obs <- model_obs %>%
group_by(lat, lon) %>%
mutate(n = sum(!is.na(!!sym(i_variable)))) %>%
ungroup()
# set variable value from model for observation depth, if only one model depth available
model_obs_set <- model_obs %>%
filter(n == 1) %>%
group_by(lon, lat) %>%
mutate(!!sym(i_variable) := mean(!!sym(i_variable), na.rm = TRUE)) %>%
ungroup()
# interpolate variable value from model to observation depth
model_obs_interpo <- model_obs %>%
filter(n > 1) %>%
group_by(lon, lat) %>%
arrange(depth) %>%
mutate(!!sym(i_variable) := approxfun(depth, !!sym(i_variable), rule = 2)(depth)) %>%
ungroup()
# join interpolated and set model values
model_obs_interpo <-
full_join(model_obs_interpo, model_obs_set)
rm(model_obs_set)
# subsetted interpolated values at observation depth
model_obs_interpo <-
inner_join(Glodap_year_grid_depth, model_obs_interpo) %>%
select(-n) %>%
mutate(year = as.numeric(i_year))
# select observation grids without corresponding model subset
na_model <-
full_join(Glodap_year_grid_depth, model_obs_interpo) %>%
filter(is.na(!!sym(i_variable))) %>%
select(year, lat, lon) %>%
unique()
# rename interpolated model variable to indicate as model output
model_obs_interpo <- model_obs_interpo %>%
rename(!!sym(paste(i_variable, "model", sep = "_")) := !!sym(i_variable))
# add model subset to GLODAP
GLODAP_joined <-
natural_join(
GLODAP_joined,
model_obs_interpo,
by = c("year", "lat", "lon", "depth"),
jointype = "FULL"
)
# select surface annual average variable
variable_data_tibble_year_surface <-
variable_data_tibble_year %>%
filter(depth == min(depth))
# surface map of variable
p_map <- map +
geom_raster(data = variable_data_tibble_year_surface,
aes(lon, lat, fill = !!sym(i_variable))) +
scale_fill_viridis_c(name = i_variable) +
geom_tile(data = model_obs_interpo,
aes(lon, lat, width = 1, height = 1), fill = "black") +
labs(
title = "GLODAP-based cmorized subset distribution",
subtitle = paste(
"Model depth: 5m | Annual average of year",
i_year,
"| red = subsetting failed"
),
x = "Longitude",
y = "Latitude"
)
if (nrow(na_model) > 0){
p_map <- p_map +
geom_tile(data = na_model,
aes(lon, lat, width = 1, height = 1), fill = "red")
}
p_map
ggsave(
paste(
path_preprocessing,
"regular_subset_distribution_runA_2021/",
str_remove(i_model, "3D_ALL_|3D_all_|3d_all_"),
"_",
i_variable,
"_",
i_year,
".png",
sep = ""
),
width = 5,
height = 3
)
}
}
if (i_model == "FESOM_REcoM_LR_3D_all_v20211119") {
GLODAP_joined <- GLODAP_joined %>%
mutate(po4_model = no3_model/16)
}
if (i_model == "planktom12_3d_all_v20220404") {
GLODAP_joined <- GLODAP_joined %>%
mutate(no3_model = po4_model*16)
}
# Remove 3D_all from model name
i_model <- str_remove(i_model, "3D_ALL_|3D_all_|3d_all_")
# write raw data file for GLODAP-based subsetting model variables
GLODAP_joined %>%
write_csv(paste(
path_preprocessing,
paste(
i_model,
"GLODAPv2.2021_preprocessed_model_runA_raw_subset_ann.csv",
sep = "_"
),
sep = ""
))
rm(GLODAP_joined)
# write file for model summary statistics (original cmorized unit)
stats_summary %>%
write_csv(
paste(
path_preprocessing,
"regular_subset_distribution_runA_2021/",
i_model,
"_",
model_ID,
"_summary_stats.csv",
sep = ""
)
)
}
[1] "CESM-ETHZ_3D_ALL_v20211122"
[1] "dissic_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "CNRM-ESM2-1_3D_ALL_v20211208"
[1] "dissic_CNRM-ESM2-1_A_1_gr_1980-2018_v20211208.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_CNRM-ESM2-1_A_1_gr_1980-2018_v20211208.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_CNRM-ESM2-1_A_1_gr_1980-2018_v20211208.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_CNRM-ESM2-1_A_1_gr_1980-2018_v20211208.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_CNRM-ESM2-1_A_1_gr_1980-2018_v20211208.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_CNRM-ESM2-1_A_1_gr_1980-2018_v20211208.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_CNRM-ESM2-1_A_1_gr_1980-2018_v20211208.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_CNRM-ESM2-1_A_1_gr_1980-2018_v20211208.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "EC-Earth3_3D_ALL_v20220323"
[1] "dissic_EC-Earth3_A_1_gr_1980-2018_v20220323.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_EC-Earth3_A_1_gr_1980-2018_v20220323.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_EC-Earth3_A_1_gr_1980-2018_v20220323.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_EC-Earth3_A_1_gr_1980-2018_v20220323.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_EC-Earth3_A_1_gr_1980-2018_v20220323.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_EC-Earth3_A_1_gr_1980-2018_v20220323.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_EC-Earth3_A_1_gr_1980-2018_v20220323.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_EC-Earth3_A_1_gr_1980-2018_v20220323.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "FESOM_REcoM_LR_3D_all_v20211119"
[1] "dissic_FESOM_REcoM_LR_A_1_gr_1980-2018_v20211119.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_FESOM_REcoM_LR_A_1_gr_1980-2018_v20211119.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_FESOM_REcoM_LR_A_1_gr_1980-2018_v20211119.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_FESOM_REcoM_LR_A_1_gr_1980-2018_v20211119.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_FESOM_REcoM_LR_A_1_gr_1980-2018_v20211119.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_FESOM_REcoM_LR_A_1_gr_1980-2018_v20211119.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_FESOM_REcoM_LR_A_1_gr_1980-2018_v20211119.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "MOM6-Princeton_3D_ALL_v20220125"
[1] "dissic_MOM6-Princeton_A_1_gr_1980-2018_v20220125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_MOM6-Princeton_A_1_gr_1980-2018_v20220125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_MOM6-Princeton_A_1_gr_1980-2018_v20220125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_MOM6-Princeton_A_1_gr_1980-2018_v20220125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_MOM6-Princeton_A_1_gr_1980-2018_v20220125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_MOM6-Princeton_A_1_gr_1980-2018_v20220125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] "talk_MOM6-Princeton_A_1_gr_1980-2018_v20220125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_MOM6-Princeton_A_1_gr_1980-2018_v20220125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "MRI-ESM2-1_3D_ALL_v20220502"
[1] "dissic_MRI-ESM2-1_A_1_gr_1980-2018_v20220502.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_MRI-ESM2-1_A_1_gr_1980-2018_v20220502.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_MRI-ESM2-1_A_1_gr_1980-2018_v20220502.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_MRI-ESM2-1_A_1_gr_1980-2018_v20220502.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_MRI-ESM2-1_A_1_gr_1980-1980_v20220502.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_MRI-ESM2-1_A_1_gr_1980-2018_v20220502.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_MRI-ESM2-1_A_1_gr_1980-2018_v20220502.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_MRI-ESM2-1_A_1_gr_1980-2018_v20220502.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "NorESM-OC1.2_3D_ALL_v20211125"
[1] "dissic_NorESM-OC1.2_A_1_gr_1980-2018_v20211125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_NorESM-OC1.2_A_1_gr_1980-2018_v20211125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_NorESM-OC1.2_A_1_gr_1980-2018_v20211125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_NorESM-OC1.2_A_1_gr_1980-2018_v20211125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_NorESM-OC1.2_A_1_gr_1980-2018_v20211125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_NorESM-OC1.2_A_1_gr_1980-2018_v20211125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_NorESM-OC1.2_A_1_gr_1980-2018_v20211125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_NorESM-OC1.2_A_1_gr_1980-2018_v20211125.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "ORCA025-GEOMAR_3D_ALL_v20210804"
[1] "dissic_ORCA025-GEOMAR_A_1_gr_1980-1989_v20210804.nc"
[2] "dissic_ORCA025-GEOMAR_A_1_gr_1990-1999_v20210804.nc"
[3] "dissic_ORCA025-GEOMAR_A_1_gr_2000-2009_v20210804.nc"
[4] "dissic_ORCA025-GEOMAR_A_1_gr_2010-2018_v20210804.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_ORCA025-GEOMAR_A_1_gr_1980-1989_v20210804.nc"
[2] "no3_ORCA025-GEOMAR_A_1_gr_1990-1999_v20210804.nc"
[3] "no3_ORCA025-GEOMAR_A_1_gr_2000-2009_v20210804.nc"
[4] "no3_ORCA025-GEOMAR_A_1_gr_2010-2018_v20210804.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_ORCA025-GEOMAR_A_1_gr_1980-1989_v20210804.nc"
[2] "o2_ORCA025-GEOMAR_A_1_gr_1990-1999_v20210804.nc"
[3] "o2_ORCA025-GEOMAR_A_1_gr_2000-2009_v20210804.nc"
[4] "o2_ORCA025-GEOMAR_A_1_gr_2010-2018_v20210804.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_ORCA025-GEOMAR_A_1_gr_1980-1989_v20210804.nc"
[2] "po4_ORCA025-GEOMAR_A_1_gr_1990-1999_v20210804.nc"
[3] "po4_ORCA025-GEOMAR_A_1_gr_2000-2009_v20210804.nc"
[4] "po4_ORCA025-GEOMAR_A_1_gr_2010-2018_v20210804.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_ORCA025-GEOMAR_A_1_gr_1980-1989_v20210804.nc"
[2] "so_ORCA025-GEOMAR_A_1_gr_1990-1999_v20210804.nc"
[3] "so_ORCA025-GEOMAR_A_1_gr_2000-2009_v20210804.nc"
[4] "so_ORCA025-GEOMAR_A_1_gr_2010-2018_v20210804.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_ORCA025-GEOMAR_A_1_gr_1980-1989_v20210804.nc"
[2] "talk_ORCA025-GEOMAR_A_1_gr_1990-1999_v20210804.nc"
[3] "talk_ORCA025-GEOMAR_A_1_gr_2000-2009_v20210804.nc"
[4] "talk_ORCA025-GEOMAR_A_1_gr_2010-2018_v20210804.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_ORCA025-GEOMAR_A_1_gr_1980-1989_v20210804.nc"
[2] "thetao_ORCA025-GEOMAR_A_1_gr_1990-1999_v20210804.nc"
[3] "thetao_ORCA025-GEOMAR_A_1_gr_2000-2009_v20210804.nc"
[4] "thetao_ORCA025-GEOMAR_A_1_gr_2010-2018_v20210804.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "ORCA1-LIM3-PISCES_3D_ALL_v20211215"
[1] "dissic_ORCA1-LIM3-PISCES_A_1_gr_1980-2018_v20211215.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "no3_ORCA1-LIM3-PISCES_A_1_gr_1980-2018_v20211215.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_ORCA1-LIM3-PISCES_A_1_gr_1980-2018_v20211215.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_ORCA1-LIM3-PISCES_A_1_gr_1980-2018_v20211215.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_ORCA1-LIM3-PISCES_A_1_gr_1980-2018_v20211215.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_ORCA1-LIM3-PISCES_A_1_gr_1980-2018_v20211215.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_ORCA1-LIM3-PISCES_A_1_gr_1980-2018_v20211215.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_ORCA1-LIM3-PISCES_A_1_gr_1980-2018_v20211215.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "planktom12_3d_all_v20220404"
[1] "dissic_PlankTOM12_A_1_gr_1980-2018_v20220404.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "o2_PlankTOM12_A_1_gr_1980-2018_v20220404.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "po4_PlankTOM12_A_1_gr_1980-2018_v20220404.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "si_PlankTOM12_A_1_gr_1980-2018_v20220404.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "so_PlankTOM12_A_1_gr_1980-2018_v20220404.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "talk_PlankTOM12_A_1_gr_1980-2018_v20220404.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
[1] "thetao_PlankTOM12_A_1_gr_1980-2018_v20220404.nc"
[1] 1981
[1] 1982
[1] 1983
[1] 1984
[1] 1985
[1] 1986
[1] 1987
[1] 1988
[1] 1989
[1] 1990
[1] 1991
[1] 1992
[1] 1993
[1] 1994
[1] 1995
[1] 1996
[1] 1997
[1] 1998
[1] 1999
[1] 2000
[1] 2001
[1] 2002
[1] 2003
[1] 2004
[1] 2005
[1] 2006
[1] 2007
[1] 2008
[1] 2009
[1] 2010
[1] 2011
[1] 2012
[1] 2013
[1] 2014
[1] 2015
[1] 2016
[1] 2017
[1] 2018
rm(GLODAP, GLODAP_joined)
for (i_model in models) {
# i_model <- models[3]
# Remove 3D_all from model name
i_model <- str_remove(i_model, "3D_ALL_|3D_all_|3d_all_")
# read file for GLODAP-based subsetting model variables
GLODAP_single <-
read_csv(
paste0(
path_preprocessing,
i_model,
"_GLODAPv2.2021_preprocessed_model_runA_raw_subset_ann.csv"
),
col_types = cols(
.default = col_double(),
basin_AIP = col_character(),
date = col_date(format = ""),
dissic_model = col_double(),
no3_model = col_double(),
o2_model = col_double(),
po4_model = col_double(),
si_model = col_double(),
so_model = col_double(),
talk_model = col_double(),
thetao_model = col_double()
)
)
GLODAP_single <- GLODAP_single %>%
mutate(model = i_model)
if (exists("GLODAP")) {
GLODAP <- bind_rows(GLODAP, GLODAP_single)
}
if (!exists("GLODAP")) {
GLODAP <- GLODAP_single
}
}
rm(GLODAP_single)
# GLODAP <- GLODAP %>%
# sample_n(10000)
# filter out GLODAP grids without model subset
GLODAP <- GLODAP %>%
filter(!is.na(so_model))
# calculate model temperature
GLODAP <- GLODAP %>%
mutate(temp_model = gsw_pt_from_t(
SA = so_model,
t = thetao_model,
p = 10.1325,
p_ref = depth
))
# unit conversion from mol/m3 to µmol/kg
GLODAP <- GLODAP %>%
mutate(
rho = gsw_pot_rho_t_exact(
SA = so_model,
t = temp_model,
p = depth,
p_ref = 10.1325
),
dissic_model = dissic_model * (1e+6 / rho),
talk_model = talk_model * (1e+6 / rho),
o2_model = o2_model * (1e+6 / rho),
no3_model = no3_model * (1e+6 / rho),
po4_model = po4_model * (1e+6 / rho),
si_model = si_model * (1e+6 / rho)
)
# calculate AOU
GLODAP <- GLODAP %>%
mutate(
oxygen_sat_m3 = gas_satconc(
S = so_model,
t = temp_model,
P = 1.013253,
species = "O2"
),
oxygen_sat_kg = oxygen_sat_m3 * (1e+3 / rho),
aou_model = oxygen_sat_kg - o2_model
) %>%
select(-oxygen_sat_kg, -oxygen_sat_m3)
# calculate gamma model in temporary data frame
GLODAP_gamma <- GLODAP %>%
select(depth, lat,
so_model, thetao_model, lon)
GLODAP_gamma <- GLODAP_gamma %>%
mutate(CTDPRS = gsw_p_from_z(-depth,
lat))
GLODAP_gamma <- GLODAP_gamma %>%
rename(
LATITUDE = lat,
LONGITUDE = lon,
SALNTY = so_model,
THETA = thetao_model
)
source_python(
paste(
path_root,
"/utilities/functions/python_scripts/",
"Gamma_GLODAP_python.py",
sep = ""
)
)
GLODAP_gamma <- calculate_gamma(GLODAP_gamma)
# join gamma column with original data frame
GLODAP <- GLODAP %>%
mutate(gamma_model = GLODAP_gamma$GAMMA)
GLODAP_NA_filled <- GLODAP
rm(GLODAP_gamma)
# Replace model value with NA, if observations are NA
GLODAP$so_model <-
ifelse(is.na(GLODAP$sal), NA, GLODAP$so_model)
GLODAP$thetao_model <-
ifelse(is.na(GLODAP$theta), NA, GLODAP$thetao_model)
GLODAP$temp_model <-
ifelse(is.na(GLODAP$temp), NA, GLODAP$temp_model)
GLODAP$dissic_model <-
ifelse(is.na(GLODAP$tco2), NA, GLODAP$dissic_model)
GLODAP$talk_model <-
ifelse(is.na(GLODAP$talk), NA, GLODAP$talk_model)
GLODAP$o2_model <-
ifelse(is.na(GLODAP$oxygen), NA, GLODAP$o2_model)
GLODAP$no3_model <-
ifelse(is.na(GLODAP$nitrate), NA, GLODAP$no3_model)
GLODAP$po4_model <-
ifelse(is.na(GLODAP$phosphate), NA, GLODAP$po4_model)
GLODAP$si_model <-
ifelse(is.na(GLODAP$silicate), NA, GLODAP$si_model)
GLODAP$aou_model <-
ifelse(is.na(GLODAP$aou), NA, GLODAP$aou_model)
# write file for GLODAP observations + subsetted model variables
GLODAP %>%
group_by(model) %>%
group_walk(~ write_csv(
.x,
paste(
path_preprocessing,
.y$model,
"_GLODAPv2.2021_preprocessed_model_runA_both_ann.csv",
sep = ""
)
))
GLODAP_NA_filled %>%
group_by(model) %>%
group_walk(~ write_csv(
.x,
paste(
path_preprocessing,
.y$model,
"_GLODAPv2.2021_preprocessed_model_runA_both_NA_filled_ann.csv",
sep = ""
)
))
# remove GLODAP observations and rename model subset
GLODAP <- GLODAP %>%
select(-c(
sal,
theta,
temp,
tco2,
talk,
oxygen,
nitrate,
phosphate,
silicate,
aou,
gamma
)) %>%
rename(
sal = so_model,
theta = thetao_model,
temp = temp_model,
tco2 = dissic_model,
talk = talk_model,
oxygen = o2_model,
nitrate = no3_model,
phosphate = po4_model,
silicate = si_model,
aou = aou_model,
gamma = gamma_model
)
GLODAP_NA_filled <- GLODAP_NA_filled %>%
select(-c(
sal,
theta,
temp,
tco2,
talk,
oxygen,
nitrate,
phosphate,
silicate,
aou,
gamma
)) %>%
rename(
sal = so_model,
theta = thetao_model,
temp = temp_model,
tco2 = dissic_model,
talk = talk_model,
oxygen = o2_model,
nitrate = no3_model,
phosphate = po4_model,
silicate = si_model,
aou = aou_model,
gamma = gamma_model
)
# write final file for GLODAP-based subsetting model variables
GLODAP %>%
select(-row_number) %>%
group_by(model) %>%
group_walk( ~ write_csv(
.x,
paste(
path_preprocessing,
.y$model,
"_GLODAPv2.2021_preprocessed_model_runA_final_ann.csv",
sep = ""
)
))
GLODAP_NA_filled %>%
select(-row_number) %>%
group_by(model) %>%
group_walk(~ write_csv(
.x,
paste(
path_preprocessing,
.y$model,
"_GLODAPv2.2021_preprocessed_model_runA_final_NA_filled_ann.csv",
sep = ""
)
))
GLODAP <-
read_csv(paste(path_GLODAP_preprocessing,
"GLODAPv2.2021_preprocessed.csv",
sep = ""))
GLODAP <- GLODAP %>%
mutate(month = month(date))
# select GLODAP data for 2019
GLODAP_2019 <- GLODAP %>%
filter(year == 2018)
# create month x lat x lon grid of observations
Glodap_year_grid_horizontal <- GLODAP_2019 %>%
select(month, lat, lon) %>%
unique()
# create month x lat x lon x depth grid of observations
Glodap_year_grid_depth <- GLODAP_2019 %>%
select(month, lat, lon, depth) %>%
unique()
# read in cmorized tco2 output in year 2019
variable_data_tibble <-
read_ncdf(paste(path_cmorized,
"dissic_CESM-ETHZ_A_1_gr_1980-2018_v20211122.nc",
sep = ""
)) %>%
as_tibble()
# remove na values
variable_data_tibble <-
variable_data_tibble %>%
filter(!is.na(dissic))
# harmonize longitudes
variable_data_tibble <- variable_data_tibble %>%
mutate(lon = if_else(lon < 20, lon + 360, lon))
# only consider model grids within basinmask
variable_data_tibble <-
inner_join(variable_data_tibble, basinmask) %>%
select(-basin_AIP)
# mutate variables
variable_data_tibble <- variable_data_tibble %>%
mutate(year = year(time_ann) + 1, dissic = as.numeric(dissic)) %>%
filter(year == 2018) %>%
select(-time_ann)
# subset model at month x lat x lon grid of observations
model_grid_horizontal <-
inner_join(Glodap_year_grid_horizontal, variable_data_tibble)
# join model and month x lat x lon x depth grid of observations
model_obs <-
full_join(model_grid_horizontal, Glodap_year_grid_depth)
# calculate nr of observations per month x lat x lon grid
model_obs <- model_obs %>%
group_by(month, lat, lon) %>%
mutate(n = sum(!is.na(dissic))) %>%
ungroup()
# interpolate variable value from model to observation depth
model_obs_interpo <- model_obs %>%
filter(n > 1) %>%
group_by(lon, lat, month) %>%
arrange(month, lat, lon, depth) %>%
mutate(dissic_interpolate = approxfun(depth, dissic, rule = 2)(depth)) %>%
ungroup()
ggplot() +
geom_path(
data = model_obs_interpo %>%
filter(lat == -65.5, lon == 139.5, !is.na(dissic), month == 1) %>%
arrange(depth),
aes(dissic, depth, col = "model")
) +
geom_point(
data = model_obs_interpo %>%
filter(lat == -65.5, lon == 139.5, !is.na(dissic), month == 1) %>%
arrange(depth),
aes(dissic, depth, col = "model")
) +
geom_point(
data = model_obs_interpo %>%
filter(lat == -65.5, lon == 139.5, is.na(dissic), month == 1),
aes(dissic_interpolate, depth, col = "interpolated")
) +
scale_y_reverse() +
scale_color_brewer(palette = "Dark2", name = "") +
labs(title = "Interpolation to sampling depth - tco2 of year 2019")
GLODAP_max_depth <- GLODAP %>%
select(lon, lat, depth) %>%
group_by(lon, lat) %>%
summarise(max_depth_GLODAP = max(depth))
model_max_depth <- variable_data_tibble %>%
select(lon, lat, depth) %>%
group_by(lon, lat) %>%
summarise(max_depth_model = max(depth))
GLODAP_model_depth_offset <-
left_join(GLODAP_max_depth, model_max_depth) %>%
mutate(offset = max_depth_GLODAP - max_depth_model)
map +
geom_raster(
data = GLODAP_model_depth_offset %>%
filter(offset > 500),
aes(lon, lat, fill = offset)
) +
scale_fill_viridis_c(direction = -1) +
labs(
title = "GLODAP-model max sampling depth offset",
subtitle = "Year 1971 - 2019",
x = "Longitude",
y = "Latitude"
)
files <- fs::dir_ls(path_preprocessing)
files <- files[str_detect(files, pattern = "preprocessed_model_runA_both_ann.csv")]
GLODAP_cmorized <- files %>%
map_dfr(read_csv, .id = "model")
GLODAP_cmorized <- GLODAP_cmorized %>%
mutate(
model = str_remove(model, path_preprocessing),
model = str_remove(
model,
"_GLODAPv2.2021_preprocessed_model_runA_both_ann.csv"
)
)
GLODAP_cmorized_beta <- GLODAP_cmorized %>%
filter(!is.na(talk),
!is.na(tco2),
!is.na(temp),
!is.na(sal),
!is.na(pressure),
!is.na(talk_model),
!is.na(dissic_model),
!is.na(temp_model),
!is.na(so_model)) %>%
mutate(
BetaD = buffer(
flag = 15,
var1 = talk* 1e-6,
var2 = tco2* 1e-6,
S = sal,
T = temp,
k1k2 = "l",
P = pressure/10,
Pt = phosphate* 1e-6,
Sit = silicate* 1e-6,
warn = "n"
)$BetaD,
BetaD_model = buffer(
flag = 15,
var1 = talk_model* 1e-6,
var2 = dissic_model* 1e-6,
S = so_model,
T = temp_model,
k1k2 = "l",
P = pressure/10,
Pt = po4_model* 1e-6,
Sit = si_model* 1e-6,
warn = "n"
)$BetaD
)
GLODAP_cmorized_beta %>%
group_by(model) %>%
group_walk(~ write_csv(
.x,
paste(
path_preprocessing,
.y$model,
"_GLODAPv2.2021_preprocessed_model_runA_both_ann_incl_betaD.csv",
sep = ""
)
))
files <- fs::dir_ls(path_preprocessing)
files <- files[str_detect(files, pattern = "preprocessed_model_runA_both_ann_incl_betaD.csv")]
GLODAP_cmorized_beta <- files %>%
map_dfr(read_csv, .id = "model")
GLODAP_cmorized_beta <- GLODAP_cmorized_beta %>%
mutate(
model = str_remove(model, path_preprocessing),
model = str_remove(
model,
"_GLODAPv2.2021_preprocessed_model_runA_both_ann_incl_betaD.csv"
)
)
GLODAP_cmorized_beta <- GLODAP_cmorized_beta %>%
mutate(BetaD_tco2 = tco2 / BetaD / 100,
BetaD_dissic_model = dissic_model / BetaD_model / 100)
GLODAP_cmorized <- GLODAP_cmorized %>%
mutate(
model = str_split(model, "_v", simplify = TRUE)[,1]
)
GLODAP_cmorized_beta <- GLODAP_cmorized_beta %>%
mutate(
model = str_split(model, "_v", simplify = TRUE)[,1]
)
# for loop across variables
obs_var <-
c(
"tco2",
"talk",
"oxygen",
"aou",
"nitrate",
"phosphate",
"silicate",
"sal",
"temp",
"theta",
"gamma",
"BetaD",
"BetaD_tco2"
)
model_var <-
c(
"dissic_model",
"talk_model",
"o2_model",
"aou_model",
"no3_model",
"po4_model",
"si_model",
"so_model",
"temp_model",
"thetao_model",
"gamma_model",
"BetaD_model",
"BetaD_dissic_model"
)
for (i in 1:length(obs_var)) {
# i <- 1
pdf(
file = paste0(
path_preprocessing,
"models_vs_GLODAP/",
str_remove(model_var[i], "_model"),
"_RECCAP2_models_vs_GLODAPv2-2021.pdf"
),
width = 14,
height = 8
)
print(obs_var[i])
# select correlated observation and model variable
if (obs_var[i] %in% c("BetaD", "BetaD_tco2")) {
GLODAP_cmorized_var <- GLODAP_cmorized_beta %>%
select(model,
year,
month,
lat,
lon,
depth,
basin_AIP,
!!sym(obs_var[i]),
!!sym(model_var[i])) %>%
drop_na() %>%
mutate(
season = case_when(
month %in% c(3, 4, 5) ~ "Spring",
month %in% c(6, 7, 8) ~ "Summer",
month %in% c(9, 10, 11) ~ "Autumn",
month %in% c(12, 1, 2) ~ "Winter"
)
)
} else{
GLODAP_cmorized_var <- GLODAP_cmorized %>%
select(model,
year,
month,
lat,
lon,
depth,
basin_AIP,
!!sym(obs_var[i]),
!!sym(model_var[i])) %>%
drop_na() %>%
mutate(
season = case_when(
month %in% c(3, 4, 5) ~ "Spring",
month %in% c(6, 7, 8) ~ "Summer",
month %in% c(9, 10, 11) ~ "Autumn",
month %in% c(12, 1, 2) ~ "Winter"
)
)
}
# calculate equal axis limits and binwidth
axis_lims <- GLODAP_cmorized_var %>%
summarise(max_value = max(c(max(!!sym(
obs_var[i]
)),
max(
!!sym(model_var[i])
))),
min_value = min(c(min(!!sym(
obs_var[i]
)),
min(
!!sym(model_var[i])
))))
binwidth_value <- (axis_lims$max_value - axis_lims$min_value) / 40
axis_lims <- c(axis_lims$min_value, axis_lims$max_value)
# obs-model plot (season)
print(
ggplot(GLODAP_cmorized_var, aes(
x = !!sym(obs_var[i]),
y = !!sym(model_var[i])
)) +
geom_bin2d(binwidth = binwidth_value) +
labs(title = "Observation (x) vs Model (y)",
subtitle = "Seasonal comparison") +
scale_fill_viridis_c(trans = "log10") +
geom_abline(slope = 1,
col = 'red') +
coord_equal(xlim = axis_lims,
ylim = axis_lims) +
facet_grid(season ~ model)
)
# obs-model plot (year)
print(
ggplot(GLODAP_cmorized_var, aes(
x = !!sym(obs_var[i]),
y = !!sym(model_var[i])
)) +
geom_bin2d(binwidth = binwidth_value) +
labs(title = "Observation (x) vs Model (y)",
subtitle = "All years") +
scale_fill_viridis_c(trans = "log10") +
geom_abline(slope = 1, col = 'red') +
coord_equal(xlim = axis_lims,
ylim = axis_lims) +
facet_wrap( ~ model, ncol = 5)
)
# Calculate variable offset
GLODAP_cmorized_var <- GLODAP_cmorized_var %>%
mutate(offset = !!sym(model_var[i])-!!sym(obs_var[i]))
# Calculate annual mean offset
GLODAP_cmorized_var_year <- GLODAP_cmorized_var %>%
group_by(year, model) %>%
summarise(offset = mean(offset)) %>%
ungroup()
muted <- c(colour("muted", names = FALSE)(9),"#999999")
# plot annual mean offset
print(
GLODAP_cmorized_var_year %>%
ggplot(aes(year, offset, col = model)) +
geom_point() +
geom_line() +
scale_color_manual(values = muted) +
labs(title = "Annual mean offset",
subtitle = paste(sym(model_var[i]), "-", sym(obs_var[i]))) +
theme(legend.position = "bottom",
legend.title = element_blank())
)
# spatial distribution of the model-observations offset for 4 depth intervals
intervals <- c(0, 150, 500, 2000, 8000)
for (j in 1:4) {
print(intervals[j])
# j <- 1
GLODAP_cmorized_var_interval <- GLODAP_cmorized_var %>%
filter(depth >= intervals[j],
depth < intervals[j + 1])
# Calculate annual mean offset
GLODAP_cmorized_var_year <- GLODAP_cmorized_var_interval %>%
group_by(year, model) %>%
summarise(offset = mean(offset)) %>%
ungroup()
# plot annual mean offset
print(
GLODAP_cmorized_var_year %>%
ggplot(aes(year, offset, col = model)) +
geom_point() +
geom_line() +
labs(
title = paste(
"Annual mean offset | Depth interval:",
intervals[j],
"-",
intervals[j + 1],
"m"
),
subtitle = paste(sym(model_var[i]), "-", sym(obs_var[i]))
) +
scale_color_manual(values = muted) +
theme(legend.position = "bottom",
legend.title = element_blank())
)
GLODAP_cmorized_var_grid <- GLODAP_cmorized_var_interval %>%
group_by(lat, lon, model) %>%
summarise(offset = mean(offset)) %>%
ungroup()
# plot mean spatial distribution (model - obs)
limit <-
quantile(abs(GLODAP_cmorized_var_grid$offset), 0.98) * c(-1, 1)
print(
map +
geom_raster(data = GLODAP_cmorized_var_grid, aes(lon, lat, fill = offset)) +
scale_fill_continuous_divergingx(
palette = "Spectral",
name = "offset",
rev = TRUE,
limit = limit,
na.value = "black"
) +
labs(
title = paste(model_var[i],
"-",
obs_var[i],
" | mean offset per grid cell"),
subtitle = paste(
"Depth interval:",
intervals[j],
"-",
intervals[j + 1],
"m | black: outside 98th percentile"
),
x = "Longitude",
y = "Latitude"
) +
facet_wrap( ~ model, ncol = 4)
)
print(
GLODAP_cmorized_var_grid %>%
ggplot(aes(offset)) +
geom_vline(xintercept = limit) +
geom_histogram() +
labs(
title = paste(
model_var[i],
" - ",
obs_var[i],
"mean offset per grid cell | histogram + abs. 98th Percentile"
),
subtitle = paste("Depth interval:",
intervals[j], "-", intervals[j + 1], "m")
) +
coord_cartesian(expand = FALSE) +
facet_wrap(~ model, ncol = 3)
)
}
# zonal mean section of the model-observations offset for each basin
for (i_basin_AIP in unique(GLODAP_cmorized_var$basin_AIP)) {
# i_basin_AIP = "Atlantic"
print(i_basin_AIP)
GLODAP_cmorized_var_zonal <- GLODAP_cmorized_var %>%
filter(basin_AIP == i_basin_AIP) %>%
group_by(lat, depth, model) %>%
summarise(offset = mean(offset, na.rm = TRUE)) %>%
ungroup()
# plot zonal mean section (model - obs)
lat_max <- params_global$lat_max
lat_min <- params_global$lat_min
limit <-
quantile(abs(GLODAP_cmorized_var_zonal$offset), 0.98) * c(-1, 1)
print(
GLODAP_cmorized_var_zonal %>%
ggplot(aes(lat, depth, z = offset)) +
stat_summary_2d(binwidth = c(1, 100)) +
scale_fill_continuous_divergingx(
palette = "Spectral",
name = "offset",
rev = TRUE,
limit = limit,
na.value = "black"
) +
coord_fixed(expand = 0,
xlim = c(lat_min, lat_max),
ratio = 0.01) +
scale_y_reverse(limits = c(6000, 0),
breaks = seq(0,6000,2000)) +
labs(
title = paste(model_var[i],
"-",
obs_var[i],
" | zonal mean offset"),
subtitle = paste("Basin:",
i_basin_AIP,
" | black: outside 98th percentile"),
x = "Latitude (°N)",
y = "Depth (m)"
) +
facet_wrap(~ model, ncol = 4)
)
}
dev.off()
}
[1] "tco2"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "talk"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "oxygen"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "aou"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "nitrate"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "phosphate"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "silicate"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "sal"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "temp"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "theta"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "gamma"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "BetaD"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
[1] "BetaD_tco2"
[1] 0
[1] 150
[1] 500
[1] 2000
[1] "Atlantic"
[1] "Indian"
[1] "Pacific"
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3
Matrix products: default
BLAS: /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] khroma_1.9.0 seacarb_3.3.0 SolveSAPHE_2.1.0 reticulate_1.23
[5] oce_1.5-0 gsw_1.0-6 rqdatatable_1.3.0 rquery_1.4.7
[9] wrapr_2.0.8 lubridate_1.8.0 stars_0.5-5 sf_1.0-5
[13] abind_1.4-5 geomtextpath_0.1.0 colorspace_2.0-2 marelac_2.1.10
[17] shape_1.4.6 ggforce_0.3.3 metR_0.11.0 scico_1.3.0
[21] patchwork_1.1.1 collapse_1.7.0 forcats_0.5.1 stringr_1.4.0
[25] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1 tidyr_1.1.4
[29] tibble_3.1.6 ggplot2_3.3.5 tidyverse_1.3.1 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] ellipsis_0.3.2 class_7.3-20 rprojroot_2.0.2 fs_1.5.2
[5] rstudioapi_0.13 proxy_0.4-26 farver_2.1.0 bit64_4.0.5
[9] fansi_1.0.2 xml2_1.3.3 ncdf4_1.19 knitr_1.37
[13] polyclip_1.10-0 jsonlite_1.7.3 broom_0.7.11 dbplyr_2.1.1
[17] png_0.1-7 compiler_4.1.2 httr_1.4.2 backports_1.4.1
[21] assertthat_0.2.1 Matrix_1.4-0 fastmap_1.1.0 cli_3.1.1
[25] later_1.3.0 tweenr_1.0.2 htmltools_0.5.2 tools_4.1.2
[29] gtable_0.3.0 glue_1.6.0 rappdirs_0.3.3 Rcpp_1.0.8
[33] RNetCDF_2.5-2 cellranger_1.1.0 jquerylib_0.1.4 vctrs_0.3.8
[37] lwgeom_0.2-8 xfun_0.29 ps_1.6.0 rvest_1.0.2
[41] ncmeta_0.3.0 lifecycle_1.0.1 tidync_0.2.4 getPass_0.2-2
[45] MASS_7.3-55 scales_1.1.1 vroom_1.5.7 hms_1.1.1
[49] promises_1.2.0.1 parallel_4.1.2 yaml_2.2.1 sass_0.4.0
[53] stringi_1.7.6 e1071_1.7-9 checkmate_2.0.0 rlang_1.0.2
[57] pkgconfig_2.0.3 systemfonts_1.0.3 evaluate_0.14 lattice_0.20-45
[61] labeling_0.4.2 bit_4.0.4 processx_3.5.2 tidyselect_1.1.1
[65] here_1.0.1 magrittr_2.0.1 R6_2.5.1 generics_0.1.1
[69] DBI_1.1.2 pillar_1.6.4 haven_2.4.3 whisker_0.4
[73] withr_2.4.3 units_0.7-2 modelr_0.1.8 crayon_1.4.2
[77] KernSmooth_2.23-20 utf8_1.2.2 tzdb_0.2.0 rmarkdown_2.11
[81] grid_4.1.2 readxl_1.3.1 data.table_1.14.2 callr_3.7.0
[85] git2r_0.29.0 reprex_2.0.1 digest_0.6.29 classInt_0.4-3
[89] httpuv_1.6.5 textshaping_0.3.6 munsell_0.5.0 viridisLite_0.4.0
[93] bslib_0.3.1