Last updated: 2025-03-07

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a26d2ab. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data
    Ignored:    output/

Unstaged changes:
    Modified:   analysis/child/pCO2_product_synopsis.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/CMEMS_GCB.Rmd) and HTML (docs/CMEMS_GCB.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 36eac45 jens-daniel-mueller 2025-03-01 Build site.
Rmd 8b4b79f jens-daniel-mueller 2025-02-28 rerun all analysis
html bdc4da6 jens-daniel-mueller 2025-02-28 Build site.
Rmd 4d8eb67 jens-daniel-mueller 2025-02-28 ingest with time shifted fgco2 data
html ca52e03 jens-daniel-mueller 2025-02-27 Build site.
Rmd a32dc55 jens-daniel-mueller 2025-02-27 unit correction
html e30251a jens-daniel-mueller 2025-02-27 Build site.
Rmd 4fc29e2 jens-daniel-mueller 2025-02-27 ingest GCB files

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Read data

path_pCO2_products <-
  "/nfs/kryo/work/datasets/gridded/ocean/2d/observation/pco2/gcb_2024_pco2_products/"
library(ncdf4)
nc <-
  nc_open(paste0(
    path_pCO2_products,
    "GCB-2024_dataprod_CMEMS-LSCE-FFNN_1990-2023_r100_v6.nc"
  ))

time <- ncvar_get(nc,"time")
time

print(nc)
ncmeta::nc_extended(nc)
pco2_product_nc <-
  tidync(
    paste0(
      path_pCO2_products,
      "GCB-2024_dataprod_CMEMS-LSCE-FFNN_1990-2023_r100_v6.nc"
    )
  )

for (i in 1:468) {
  
  i_pco2_product <-
    pco2_product_nc %>%
    hyper_filter(time = index == i) %>%
    hyper_tibble(select_var = c("fco2atm", "fgco2", "kw", "alpha", "sfco2", "tos")) %>%
    mutate(time = ymd("1990-01-15") %m+% months(i-1))
  
  if (exists("pco2_product")) {
    pco2_product <-
      bind_rows(pco2_product, i_pco2_product)
  }
  
  if (!exists("pco2_product")) {
    pco2_product <- i_pco2_product
  }
  
  # print(i)
  
}

pco2_product_fgco2 <-
  pco2_product %>% 
  select(lon, lat, time, fgco2) %>% 
  mutate(time = time - years(5))

# pco2_product_fgco2 %>% 
#   distinct(time) %>% 
#   pull()
# 
# pco2_product %>% 
#   distinct(time) %>% 
#   pull()

pco2_product <-
  full_join(pco2_product %>% select(-fgco2) %>% filter(time < ymd("2024-01-01")),
            pco2_product_fgco2 %>% filter(time > ymd("1990-01-01")))

pco2_product <-
  pco2_product %>%
  rename(temperature = tos,
         atm_fco2 = fco2atm,
         sol = alpha)

pco2_product <-
  pco2_product %>%
  mutate(lon = as.numeric(lon),
         lat = as.numeric(lat),
         area = earth_surf(lat, lon),
         year = year(time),
         month = month(time))

pco2_product <-
  pco2_product %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon))

pco2_product <-
  pco2_product %>%
  mutate(dfco2 = sfco2 - atm_fco2)

pco2_product <-
  pco2_product %>% 
  mutate(fgco2 = -fgco2 * 60 * 60 * 24 * 365,
         kw_sol = kw * sol * 1e-2 * 24 * 365 * 1.025e-3)

pco2_product <-
  pco2_product %>%
  select(-c(kw, sol))
pCO2_product_preprocessing <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_preprocessing.Rmd"),
    product_name = "CMEMS_GCB"
  )

Preprocessing

# model <- TRUE
model <- str_detect('CMEMS_GCB', "FESOM-REcoM|ETHZ-CESM")

Load masks

biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))

region_mask <-
  read_rds(here::here("data/region_mask.rds"))

map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

Define labels and breaks

labels_breaks <- function(i_name) {
  
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub><br>(µatm)"
  }
  
  if (i_name == "dfco2") {
    i_legend_title <- "ΔfCO<sub>2</sub><br>(µatm)"
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub><br>(µatm)"
  }
  
  if (i_name == "atm_fco2") {
    i_legend_title <- "fCO<sub>2,atm</sub><br>(µatm)"
  }
  
  if (i_name == "sol") {
    i_legend_title <- "K<sub>0</sub><br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
  }
  
  if (i_name == "kw") {
    i_legend_title <- "k<sub>w</sub><br>(m yr<sup>-1</sup>)"
  }
  
  if (i_name == "kw_sol") {
    i_legend_title <- "k<sub>w</sub> K<sub>0</sub><br>(mol yr<sup>-1</sup> m<sup>-2</sup> µatm<sup>-1</sup>)"
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub><br>(µatm)"
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub><br>(µatm)"
  }
  
  if (i_name == "intpp") {
    i_legend_title <- "NPP<sub>int</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
  }

  if (i_name == "no3") {
    i_legend_title <- "NO<sub>3</sub><br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "o2") {
    i_legend_title <- "O<sub>2</sub><br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "dissic") {
    i_legend_title <- "DIC<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "sdissic") {
    i_legend_title <- "sDIC<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "cstar") {
    i_legend_title <- "C*<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "talk") {
    i_legend_title <- "TA<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "stalk") {
    i_legend_title <- "sTA<br>(μmol kg<sup>-1</sup>)"
  }
  
  
  if (i_name == "sdissic_stalk") {
    i_legend_title <- "sDIC-sTA<br>(μmol kg<sup>-1</sup>)"
  }
  
  if (i_name == "sfco2_total") {
    i_legend_title <- "total"
  }
  
  if (i_name == "sfco2_therm") {
    i_legend_title <- "thermal"
  }
  
  if (i_name == "sfco2_nontherm") {
    i_legend_title <- "non-thermal"
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_predict") {
    i_legend_title <- "FCO<sub>2</sub> pred.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_predict_int") {
    i_legend_title <- "FCO<sub>2</sub> pred.<br>(PgC yr<sup>-1</sup>)"
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp.<br>(°C)"
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST<br>(°C)"
  }
  
  if (i_name == "salinity") {
    i_legend_title <- "SSS"
  }
  
  if (i_name == "so") {
    i_legend_title <- "salinity"
  }
  
  if (i_name == "chl") {
    i_legend_title <- "lg(Chl-a)<br>(lg(mg m<sup>-3</sup>))"
  }
  
  if (i_name == "mld") {
    i_legend_title <- "MLD<br>(m)"
  }
  
  if (i_name == "press") {
    i_legend_title <- "pressure<sub>atm</sub><br>(Pa)"
  }
  
  if (i_name == "wind") {
    i_legend_title <- "Wind <br>(m sec<sup>-1</sup>)"
  }
  
  if (i_name == "SSH") {
    i_legend_title <- "SSH <br>(m)"
  }
  
  if (i_name == "fice") {
    i_legend_title <- "Sea ice <br>(%)"
  }
  
    
  if (i_name == "resid_fgco2") {
    i_legend_title <-
      "Observed"
  }
    
  if (i_name == "resid_fgco2_dfco2") {
    i_legend_title <-
      "ΔfCO<sub>2</sub>"
  }
    
  if (i_name == "resid_fgco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub>"
  }
    
  if (i_name == "resid_fgco2_dfco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub> X ΔfCO<sub>2</sub>"
  }
    
  if (i_name == "resid_fgco2_sum") {
    i_legend_title <-
      "∑"
  }
    
  if (i_name == "resid_fgco2_offset") {
    i_legend_title <-
      "Obs. - ∑"
  }
  
  all_labels_breaks <- lst(i_legend_title)
  
  return(all_labels_breaks)
  
}

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "dfco2" = labels_breaks("dfco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "kw_sol" = labels_breaks("kw_sol")$i_legend_title,
    "intpp" = labels_breaks("intpp")$i_legend_title,
    "no3" = labels_breaks("no3")$i_legend_title,
    "o2" = labels_breaks("o2")$i_legend_title,
    "dissic" = labels_breaks("dissic")$i_legend_title,
    "sdissic" = labels_breaks("sdissic")$i_legend_title,
    "cstar" = labels_breaks("cstar")$i_legend_title,
    "talk" = labels_breaks("talk")$i_legend_title,
    "stalk" = labels_breaks("stalk")$i_legend_title,
    "sdissic_stalk" = labels_breaks("sdissic_stalk")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "sfco2_total" = labels_breaks("sfco2_total")$i_legend_title,
    "sfco2_therm" = labels_breaks("sfco2_therm")$i_legend_title,
    "sfco2_nontherm" = labels_breaks("sfco2_nontherm")$i_legend_title,
    "fgco2" = labels_breaks("fgco2")$i_legend_title,
    "fgco2_predict" = labels_breaks("fgco2_predict")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "fgco2_predict_int" = labels_breaks("fgco2_int")$i_legend_title,
    "thetao" = labels_breaks("thetao")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title,
    "salinity" = labels_breaks("salinity")$i_legend_title,
    "so" = labels_breaks("so")$i_legend_title,
    "chl" = labels_breaks("chl")$i_legend_title,
    "mld" = labels_breaks("mld")$i_legend_title,
    "press" = labels_breaks("press")$i_legend_title,
    "wind" = labels_breaks("wind")$i_legend_title,
    "SSH" = labels_breaks("SSH")$i_legend_title,
    "fice" = labels_breaks("fice")$i_legend_title,
    "resid_fgco2" = labels_breaks("resid_fgco2")$i_legend_title,
    "resid_fgco2_dfco2" = labels_breaks("resid_fgco2_dfco2")$i_legend_title,
    "resid_fgco2_kw_sol" = labels_breaks("resid_fgco2_kw_sol")$i_legend_title,
    "resid_fgco2_dfco2_kw_sol" = labels_breaks("resid_fgco2_dfco2_kw_sol")$i_legend_title,
    "resid_fgco2_sum" = labels_breaks("resid_fgco2_sum")$i_legend_title,
    "resid_fgco2_offset" = labels_breaks("resid_fgco2_offset")$i_legend_title
  )

Analysis settings

name_quadratic_fit <- c("atm_co2", "atm_fco2", "spco2", "sfco2")
# name_quadratic_fit <- c(name_quadratic_fit, "dfco2", "fgco2", "fgco2_int", "temperature")

start_year <- 1990

name_divergent <- c("dco2", "dfco2", "fgco2", "fgco2_hov", "fgco2_int")

Data preprocessing

pco2_product <-
  pco2_product %>%
  filter(year >= start_year)
pco2_product_interior <-
  pco2_product_interior %>%
  filter(time >= ymd(paste0(start_year, "-01-01")))
biome_mask <- biome_mask %>% 
  mutate(area = earth_surf(lat, lon))

pco2_product <-
  full_join(pco2_product,
            biome_mask)

# set all values outside biome mask to NA

pco2_product <-
  pco2_product %>%
  mutate(across(-c(lat, lon, time, area, year, month, biome), 
                ~ if_else(is.na(biome), NA, .)))

Compuations

Maps

Biome means

pco2_product_biome_monthly_global <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>%
  mutate(fgco2_int = fgco2) %>%
  mutate(biome = case_when(str_detect(biome, "SO-SPSS|SO-ICE|Arctic") ~ "Polar",
                           TRUE ~ "Global non-polar")) %>%
  filter(biome == "Global non-polar") %>%
  select(-c(lon, lat, year, month)) %>%
  group_by(time, biome) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

pco2_product_biome_monthly_biome <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>% 
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, lat, year, month)) %>% 
  group_by(time, biome) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()


pco2_product_biome_monthly <-
  bind_rows(pco2_product_biome_monthly_global,
            pco2_product_biome_monthly_biome)

rm(
  pco2_product_biome_monthly_global,
  pco2_product_biome_monthly_biome
)


pco2_product_biome_monthly <-
  pco2_product_biome_monthly %>% 
  filter(!is.na(biome))

pco2_product_biome_monthly <-
  pco2_product_biome_monthly %>%
  mutate(year = year(time),
         month = month(time),
         .after = time)

pco2_product_biome_monthly <-
  pco2_product_biome_monthly %>%
  pivot_longer(-c(time, year, month, biome))


pco2_product_biome_annual <-
  pco2_product_biome_monthly %>%
  group_by(year, biome, name) %>%
  summarise(value = mean(value)) %>%
  ungroup()

Profiles

pco2_product_interior <- 
  left_join(
    biome_mask,
    pco2_product_interior
  )

pco2_product_profiles <- pco2_product_interior %>%
  fselect(-c(lat, lon)) %>%
  fgroup_by(biome, depth, time) %>% {
    add_vars(fgroup_vars(., "unique"),
             fmean(.,
                   w = area,
                   keep.w = FALSE,
                   keep.group_vars = FALSE))
  }

pco2_product_profiles <-
  pco2_product_profiles %>%
  mutate(
    year = year(time),
    month = month(time)
  )

gc()

Zonal mean sections

pco2_product_interior <- 
  left_join(
    region_mask,
    pco2_product_interior %>% select(-c(biome, area))
  )

pco2_product_zonal_mean <- pco2_product_interior %>%
  fselect(-c(lon)) %>%
  fgroup_by(region, depth, lat, time) %>% {
    add_vars(fgroup_vars(., "unique"),
             fmean(.,
                   keep.group_vars = FALSE))
  }

pco2_product_zonal_mean <-
  pco2_product_zonal_mean %>%
  mutate(
    year = year(time),
    month = month(time)
  )

gc()

rm(pco2_product_interior)
gc()

Absolute values

Hovmoeller plots

The following Hovmoeller plots show the value of each variable as provided through the pCO2 product. Hovmoeller plots are first presented as annual means, and than as monthly means.

Annual means

pco2_product_hovmoeller_annual <-
  pco2_product %>%
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, time, month, biome)) %>%
  group_by(year, lat) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2_int) %>% 
  filter(fgco2_hov != 0)

pco2_product_hovmoeller_annual <-
  pco2_product_hovmoeller_annual %>%
  pivot_longer(-c(year, lat)) %>% 
  drop_na()

# pco2_product_hovmoeller_annual %>%
#   filter(!(name %in% name_divergent)) %>% 
#   group_split(name) %>%
#   # tail(5) %>%
#   map(
#     ~ ggplot(data = .x,
#              aes(year, lat, fill = value)) +
#       geom_raster() +
#       scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
#       theme(legend.title = element_markdown()) +
#       coord_cartesian(expand = 0) +
#       labs(title = "Annual means",
#            y = "Latitude") +
#       theme(axis.title.x = element_blank())
#   )
# 
# pco2_product_hovmoeller_annual %>%
#   filter(name %in% name_divergent) %>% 
#   group_split(name) %>%
#   # head(1) %>%
#   map(
#     ~ ggplot(data = .x,
#              aes(year, lat, fill = value)) +
#       geom_raster() +
#       scale_fill_gradientn(
#         colours = cmocean("curl")(100),
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks(.x %>% distinct(name)),
#         limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
#         oob = squish
#       ) +
#       theme(legend.title = element_markdown()) +
#       coord_cartesian(expand = 0) +
#       labs(title = "Annual means",
#            y = "Latitude") +
#       theme(axis.title.x = element_blank())
#   )

Monthly means

pco2_product_hovmoeller_monthly <-
  pco2_product %>%
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, time, biome)) %>%
  group_by(year, month, lat) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2_int) %>% 
  filter(fgco2_hov != 0)


pco2_product_hovmoeller_monthly <-
  pco2_product_hovmoeller_monthly %>%
  pivot_longer(-c(year, month, lat)) %>% 
  drop_na()

pco2_product_hovmoeller_monthly <-
  pco2_product_hovmoeller_monthly %>% 
  mutate(decimal = year + (month-1) / 12)

# pco2_product_hovmoeller_monthly %>%
#   filter(!(name %in% name_divergent)) %>%
#   group_split(name) %>%
#   # head(1) %>%
#   map(
#     ~ ggplot(data = .x,
#              aes(decimal, lat, fill = value)) +
#       geom_raster() +
#       scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
#       theme(legend.title = element_markdown()) +
#       labs(title = "Monthly means",
#            y = "Latitude") +
#       coord_cartesian(expand = 0) +
#       theme(axis.title.x = element_blank())
#   )
# 
# pco2_product_hovmoeller_monthly %>%
#   filter(name %in% name_divergent) %>%
#   group_split(name) %>%
#   # head(1) %>%
#   map(
#     ~ ggplot(data = .x,
#              aes(decimal, lat, fill = value)) +
#       geom_raster() +
#       scale_fill_gradientn(
#         colours = cmocean("curl")(100),
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks(.x %>% distinct(name)),
#         limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
#         oob = squish
#       )+
#       theme(legend.title = element_markdown()) +
#       labs(title = "Monthly means",
#            y = "Latitude") +
#       coord_cartesian(expand = 0) +
#       theme(axis.title.x = element_blank())
#   )
rm(pco2_product)

gc()
pCO2_product_analysis_2023 <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_analysis.Rmd"),
    product_name = "CMEMS_GCB",
    year_anom = 2023
  )

2023 anomalies

Functions

Anomaly detection

For the detection of anomalies at any point in time and space, we fit regression models and compare the fitted to the actual value.

We use linear regression models for all parameters, except for , which are approximated with quadratic fits.

The regression models are fitted to all data since , except 2023.

anomaly_determination <- function(df,...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat)
  # group_by <- quos(biome)
  # df <- pco2_product_map_annual
  # Linear regression models

  df_lm <-
    df %>%
    filter(year != 2023,
           !(name %in% name_quadratic_fit)) %>%
    drop_na() %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(fit = map(data, ~ flm(
      formula = value ~ year, data = .x
    )))
  
  df_lm <-
    left_join(
      df_lm %>%
        unnest_wider(fit) %>%
        select(name, !!!group_by,
               intercept = `(Intercept)`,  slope = year) %>%
        mutate(intercept = as.vector(intercept),
               slope = as.vector(slope)),
      df
    ) %>%
    mutate(fit = intercept + year * slope) %>%
    select(name, !!!group_by, year, fit, value) %>%
    mutate(resid = value - fit)

  # df_lm <-
  #   df %>%
  #   filter(year != 2023,
  #          !(name %in% name_quadratic_fit)) %>%
  #   drop_na() %>% 
  #   nest(data = -c(name, !!!group_by)) %>%
  #   mutate(
  #     fit = map(data, ~ lm(value ~ year, data = .x)),
  #     tidied = map(fit, tidy),
  #     augmented = map(fit, augment)
  #   )
  # 
  # 
  # df_lm_year_anom <-
  #   full_join(
  #     df_lm %>%
  #       unnest(tidied) %>%
  #       select(name, !!!group_by, term, estimate) %>%
  #       pivot_wider(names_from = term,
  #                   values_from = estimate) %>%
  #       mutate(fit = `(Intercept)` + year * 2023) %>%
  #       select(name, !!!group_by, fit) %>%
  #       mutate(year = 2023),
  #     df %>%
  #       filter(year == 2023,
  #              !(name %in% name_quadratic_fit))
  #   ) %>%
  #   mutate(resid = value - fit)
  # 
  # 
  # df_lm <-
  #   bind_rows(
  #     df_lm %>%
  #       unnest(augmented) %>%
  #       select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
  #     df_lm_year_anom
  #   )
  # 
  # rm(df_lm_year_anom)
  
  # Quadratic regression models
  
  if(any(df %>% distinct(name) %>% pull() %in% name_quadratic_fit)){
  
  df_quadratic <-
    df %>%
    filter(year != 2023,
           name %in% name_quadratic_fit) %>%
    drop_na() %>% 
    mutate(year = year - 2000) %>% 
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ flm(
        # formula = value ~ year + I(year ^ 2), data = .x))
        # formula = value ~ year + I(year ^ 2) + I(year ^ 3), data = .x))
        formula = value ~ poly(year, 2, raw = TRUE), data = .x))
    )
  
  df_quadratic <-
    left_join(
      df_quadratic %>%
        unnest_wider(fit) %>%
        select(name, !!!group_by,
               intercept = `(Intercept)`,
               slope = `1`, 
               slope_squared = `2`
               # slope_cube = `3`
               ) %>%
        mutate(intercept = as.vector(intercept),
               slope = as.vector(slope),
               slope_squared = as.vector(slope_squared)
               # slope_cube = as.vector(slope_cube)
               ),
      df %>% 
        mutate(year = year - 2000)
    ) %>%
    mutate(fit = intercept + year * slope + year^2 * slope_squared) %>%
    select(name, !!!group_by, year, fit, value) %>%
    mutate(resid = value - fit,
           year = year + 2000)
  
  
  # df_quadratic <-
  #   df %>%
  #   filter(year != 2023,
  #          name %in% name_quadratic_fit) %>%
  #   nest(data = -c(name, !!!group_by)) %>%
  #   mutate(
  #     fit = map(data, ~ lm(value ~ year + I(year ^ 2), data = .x)),
  #     tidied = map(fit, tidy),
  #     augmented = map(fit, augment)
  #   )
  # 
  # df_quadratic_year_anom <-
  #   full_join(
  #     df_quadratic %>%
  #       unnest(tidied) %>%
  #       select(name, !!!group_by, term, estimate) %>%
  #       pivot_wider(names_from = term,
  #                   values_from = estimate) %>%
  #       mutate(fit = `(Intercept)` + year * 2023 + `I(year^2)` * 2023 ^ 2) %>%
  #       select(name, !!!group_by, fit) %>%
  #       mutate(year = 2023),
  #     df %>%
  #       filter(year == 2023,
  #              name %in% name_quadratic_fit)
  #   ) %>%
  #   mutate(resid = value - fit)
  # 
  # 
  # df_quadratic <-
  #   bind_rows(
  #     df_quadratic %>%
  #       unnest(augmented) %>%
  #       select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
  #     df_quadratic_year_anom
  #   )
  # 
  # rm(df_quadratic_year_anom)
  
  # Join linear and quadratic regression results
  
  df_anomaly <-
    bind_rows(df_lm,
              df_quadratic)
  
  rm(df_lm,
     df_quadratic)
  
  } else{
    
    df_anomaly <- df_lm
    
    rm(df_lm)
  }
  
  df_anomaly <-
    df_anomaly %>%
    arrange(year)
  
  
  return(df_anomaly)
  
}

Seasonality plots

warm_color <- "#B84A60FF"
cold_color <- "#16877CFF"

p_season <- function(df, 
                     dim_row = "name", 
                     dim_col = "biome", 
                     title = NULL, 
                     var = "resid",
                     scales = "free_y") {
  
  p <- ggplot(data = df,
              aes(month, !!ensym(var)))
  
  if(var == "resid"){
      p <- p +
        geom_hline(yintercept = 0, linewidth =0.5)
    
  }
  
  
  
  p <- p +
      geom_path(data = . %>% filter(year != 2023),
                aes(group = as.factor(year),
                    col = as.factor(paste(min(year), max(year), sep = "-"))), 
                alpha = 0.5)+
      geom_path(data = . %>% 
                  filter(year != 2023) %>% 
                  group_by_at(vars(month, dim_col, dim_row)) %>% 
                  summarise(!!ensym(var) := mean(!!ensym(var))),
                aes(col = "Climatological\nmean"), 
                linewidth = 1) +
    scale_color_manual(values = c("grey", "black"),
                       guide = guide_legend(order = 2,
                                            reverse = TRUE)) +
    new_scale_color()+
    geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(year)),
                linewidth = 1) +
      scale_color_manual(
        values = warm_color,
        guide = guide_legend(order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = title,
           x = "Month")
  
    if(df %>% filter(name == "fgco2") %>% nrow() > 0 & "value" %in% names(df)){
    
    df_sink <- df %>% 
      filter(year == 2023,
             name == "fgco2")
    
      p <- p +
          geom_point(data = df_sink %>% filter(value < 0),
             aes(shape = "Sink"), fill = "white") +
          geom_point(data = df_sink %>% filter(value >= 0),
             aes(shape = "Source"), fill = "white") +
        scale_shape_manual(values = c(25,24))
    
  }
  
  
  if (!(is.null(dim_col))) {
    p <- p +
      facet_grid(
        as.formula(paste(dim_row, "~", dim_col)),
        scales = scales,
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
    
    
  } else {
    p <- p +
      facet_grid(
        as.formula(paste(dim_row, "~ .")),
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
  }
  
  p <- p +
    theme(
      strip.text.y.left = element_markdown(),
      strip.placement = "outside",
      strip.background.y = element_blank(),
      axis.title.y = element_blank(),
      legend.title = element_blank()
    )
  
  p
  
}

fCO2 decomposition

fco2_decomposition <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  # group_by <- quos(biome, year, month)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    df %>%
    filter(name %in% c("temperature", "sfco2"))
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "temperature") %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid),
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "sfco2") %>%
        select(-c(value, resid)) %>%
        pivot_wider(values_from = fit)
    )
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_therm = (sfco2 * exp(0.0423 * temperature)) - sfco2)
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition,
      df %>%
        filter(name %in% c("sfco2")) %>%
        select(-c(value, fit, name)) %>%
        rename(sfco2_total = resid)
    )
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_nontherm = sfco2_total - sfco2_therm)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    select(-c(temperature, sfco2)) %>%
    pivot_longer(starts_with("sfco2"),
                 values_to = "resid")
  
}
fco2_decomposition <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  # group_by <- quos(biome, year, month)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    df %>%
    filter(name %in% c("temperature", "sfco2"))
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "temperature") %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid),
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "sfco2") %>%
        select(-c(value, resid)) %>%
        pivot_wider(values_from = fit)
    )
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(
      sfco2_therm = (sfco2 * exp(0.0423 * temperature)) - sfco2,
      sfco2_nontherm = (sfco2 * exp(-0.0423 * temperature)) - sfco2)
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition,
      df %>%
        filter(name %in% c("sfco2")) %>%
        select(-c(value, fit, name)) %>%
        rename(sfco2_total = resid)
    )
  
  
  # pco2_product_biome_monthly_fCO2_decomposition <-
  #   pco2_product_biome_monthly_fCO2_decomposition %>%
  #   mutate(sfco2_nontherm = sfco2_total - sfco2_therm)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    select(-c(temperature, sfco2)) %>%
    pivot_longer(starts_with("sfco2"),
                 values_to = "resid")
  
}

Flux attribution

flux_attribution <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  
  pco2_product_flux_attribution <-
    df %>%
    filter(name %in% c("dfco2", "kw_sol", "fgco2"))
  
  
  pco2_product_flux_attribution <-
    inner_join(
      pco2_product_flux_attribution %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid,
                    names_prefix = "resid_"),
      pco2_product_flux_attribution %>%
        select(-c(value, resid)) %>%
        filter(name != "fgco2") %>%
        pivot_wider(values_from = fit)
    )
  
    pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    mutate(
      resid_fgco2_dfco2 = resid_dfco2 * kw_sol,
      resid_fgco2_kw_sol = resid_kw_sol * dfco2,
      resid_fgco2_dfco2_kw_sol = resid_dfco2 * resid_kw_sol
      # resid_fgco2_sum = resid_fgco2_dfco2 + resid_fgco2_kw_sol + resid_fgco2_dfco2_kw_sol
    )
  
  # pco2_product_flux_attribution <-
  #   pco2_product_flux_attribution %>%
  #   mutate(resid_fgco2_offset = resid_fgco2 - resid_fgco2_sum)
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    select(!!!group_by, starts_with("resid_fgco2")) %>%
    pivot_longer(starts_with("resid_"),
                 values_to = "resid")
  
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    filter(str_detect(name, "dfco2|kw_sol")) %>% 
    mutate(name = factor(
      name,
      levels = c(
        "resid_fgco2",
        "resid_fgco2_dfco2",
        "resid_fgco2_kw_sol",
        "resid_fgco2_dfco2_kw_sol",
        "resid_fgco2_sum",
        "resid_fgco2_offset"
      )
    ))
  
}

Maps

The following maps show the absolute state of each variable in 2023 as provided through the pCO2 product, the change in that variable from 1990 to 2023, as well es the anomalies in 2023. Changes and anomalies are determined based on the predicted value of a linear regression model fit to the data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

2023 absolute

pco2_product_map_annual_anomaly <-
  pco2_product_map_annual %>%
  drop_na() %>% 
  anomaly_determination(lon, lat)

pco2_product_map_annual_anomaly <-
  pco2_product_map_annual_anomaly %>%
  drop_na()

pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Annual mean", 2023)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27
pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         name %in% name_divergent) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = paste("Annual mean", 2023)) +
         scale_fill_gradientn(
           colours = cmocean("curl")(100),
           rescaler = ~ scales::rescale_mid(.x, mid = 0),
           name = labels_breaks(.x %>% distinct(name)),
           limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
           oob = squish
         ) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

2023 anomaly

pco2_product_map_annual_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title =  paste(2023,"anomaly")) +
         scale_fill_gradientn(
           colours = cmocean("curl")(100),
           rescaler = ~ scales::rescale_mid(.x, mid = 0),
           name = labels_breaks(.x %>% distinct(name)),
           limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
           oob = squish
         )+
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

SST flux slope

pco2_product_map_annual_slope <-
pco2_product_map_annual_anomaly %>%
  filter(year != 2023) %>% 
  select(year, lon, lat, resid, name) %>% 
  pivot_wider(values_from = resid) %>%
  select(lon, lat, fgco2, temperature) %>%
  drop_na() %>% 
  nest(data = -c(lon, lat)) %>%
  mutate(fit = map(data, ~ flm(
    formula = fgco2 ~ temperature, data = .x
  )))
  
pco2_product_map_annual_slope <-
  pco2_product_map_annual_slope %>%
  unnest_wider(fit) %>%
  select(lon, lat, slope = temperature) %>%
  mutate(slope = as.vector(slope))

map +
  geom_tile(data = pco2_product_map_annual_slope, 
            aes(lon, lat, fill = slope)) +
  scale_fill_gradientn(
    colours = cmocean("curl")(100),
    rescaler = ~ scales::rescale_mid(.x, mid = 0),
    limits = c(
      quantile(pco2_product_map_annual_slope$slope,.01),
      quantile(pco2_product_map_annual_slope$slope, .99)),
    oob = squish
  ) +
  labs(title = "Correlation of historic annual flux and SST anomalies") +
  guides(
    fill = guide_colorbar(
      barheight = unit(0.3, "cm"),
      barwidth = unit(6, "cm"),
      ticks = TRUE,
      ticks.colour = "grey20",
      frame.colour = "grey20",
      label.position = "top",
      direction = "horizontal"
    )
  ) +
  theme(legend.title = element_markdown(), legend.position = "top")

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27
pco2_product_map_annual_anomaly_temperature_predict <-
  inner_join(
    pco2_product_map_annual_slope,
    pco2_product_map_annual_anomaly %>%
      filter(name %in% c("temperature", "fgco2")) %>% 
      select(lon, lat, name, resid, year) %>% 
      drop_na() %>% 
      arrange(desc(name)) %>% 
      pivot_wider(values_from = "resid")
  )

pco2_product_map_annual_anomaly_temperature_predict <-
  pco2_product_map_annual_anomaly_temperature_predict %>%
  mutate(fgco2_predict = slope * temperature)

pco2_product_map_annual_anomaly_temperature_predict %>%
  filter(year == 2023) %>%
  select(-slope) %>% 
  pivot_longer(c(fgco2, temperature, fgco2_predict),
               values_to = "resid") %>%
  drop_na() %>% 
  # filter(name == "fgco2_predict") %>% 
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title =  paste(2023,"anomaly")) +
         scale_fill_gradientn(
           colours = cmocean("curl")(100),
           rescaler = ~ scales::rescale_mid(.x, mid = 0),
           name = labels_breaks(.x %>% distinct(name)),
           limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
           oob = squish
         ) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )
[[1]]

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_anomaly_temperature_predict <-
  full_join(
    pco2_product_map_annual_anomaly_temperature_predict %>% 
      select(lon, lat, year, temperature, fgco2, fgco2_predict),
    biome_mask %>%
      mutate(area = earth_surf(lat, lon))
  )


pco2_product_biome_annual_anomaly_temperature_predict_global <-
  pco2_product_biome_annual_anomaly_temperature_predict %>%
  drop_na() %>%
  mutate(fgco2_int = fgco2,
         fgco2_predict_int = fgco2_predict) %>%
  mutate(biome = case_when(str_detect(biome, "SO-SPSS|SO-ICE|Arctic") ~ "Polar",
                           TRUE ~ "Global non-polar")) %>%
  filter(biome == "Global non-polar") %>%
  select(-c(lon, lat)) %>%
  group_by(year, biome) %>%
  summarise(across(-c(fgco2_int, fgco2_predict_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(c(fgco2_int, fgco2_predict_int),
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

pco2_product_biome_annual_anomaly_temperature_predict <-
  pco2_product_biome_annual_anomaly_temperature_predict %>%
  drop_na() %>%
  mutate(fgco2_int = fgco2,
         fgco2_predict_int = fgco2_predict) %>%
  select(-c(lon, lat)) %>%
  group_by(year, biome) %>%
  summarise(across(-c(fgco2_int, fgco2_predict_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(c(fgco2_int, fgco2_predict_int),
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

pco2_product_biome_annual_anomaly_temperature_predict <-
  bind_rows(pco2_product_biome_annual_anomaly_temperature_predict_global,
            pco2_product_biome_annual_anomaly_temperature_predict)

rm(pco2_product_biome_annual_anomaly_temperature_predict_global)

pco2_product_biome_annual_anomaly_temperature_predict <-
  pco2_product_biome_annual_anomaly_temperature_predict %>% 
  filter(!is.na(biome))

pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(year, biome, fgco2_int, fgco2_predict_int) %>% 
  filter(biome == "Global non-polar") %>% 
  pivot_longer(starts_with("fgco2"),
               values_to = "resid") %>% 
  ggplot(aes(year, resid, col = name)) +
  geom_path() +
  geom_point()

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_anomaly_temperature_predict %>%
  ggplot(aes(fgco2_int, fgco2_predict_int)) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(
    values = rev(warm_cool_gradient[c(17,13,20)]),
    guide = guide_legend(reverse = TRUE,
                         order = 2)
  ) +
  scale_color_manual(
    values = rev(warm_cool_gradient[c(17,13,20)]),
    guide = guide_legend(reverse = TRUE,
                         order = 2)
  ) +
  labs(y = labels_breaks("fgco2_int")$i_legend_title,
       x = labels_breaks("fgco2_predict_int")$i_legend_title) +
  facet_wrap(~ biome, scales = "free") +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_anomaly_temperature_predict %>%
  ggplot(aes(fgco2_int, fgco2_predict_int)) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  ) +
  geom_point(aes(fill = temperature),
             shape = 21) +
  scale_fill_divergent() +
  labs(y = labels_breaks("fgco2_int")$i_legend_title,
       x = labels_breaks("fgco2_predict_int")$i_legend_title) +
  facet_wrap(~ biome, scales = "free") +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27
pco2_product_map_annual_anomaly %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_map_annual_anomaly.csv"
    )
  )

pco2_product_map_annual_anomaly_temperature_predict %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_map_annual_anomaly_temperature_predict.csv"
    )
  )

pco2_product_biome_annual_anomaly_temperature_predict %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_biome_annual_anomaly_temperature_predict.csv"
    )
  )

rm(pco2_product_map_annual_anomaly,
   pco2_product_map_annual_slope,
   pco2_product_map_annual_anomaly_temperature_predict,
   pco2_product_biome_annual_anomaly_temperature_predict)
gc()

Monthly means

2023 absolute

pco2_product_map_monthly_anomaly <-
  pco2_product_map_monthly %>%
  drop_na() %>% 
  anomaly_determination(lon, lat, month)

pco2_product_map_monthly_anomaly <-
  pco2_product_map_monthly_anomaly %>% 
  drop_na()



pco2_product_map_monthly_anomaly %>%
  filter(year == 2023, !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 2023)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top") +
      facet_wrap(~ month, ncol = 2)
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27
pco2_product_map_monthly_anomaly %>%
  filter(year == 2023, name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 2023)) +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
        oob = squish
      ) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top") +
      facet_wrap( ~ month, ncol = 2)
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

2023 anomaly

pco2_product_map_monthly_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(lon, lat, fill = resid)) +
      labs(title = paste(2023, "anomaly")) +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top") +
      facet_wrap( ~ month, ncol = 2)
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

fCO2 decomposition

pco2_product_map_monthly_fCO2_decomposition <-
  fco2_decomposition(pco2_product_map_monthly_anomaly,
                     year, month, lon, lat)


# pco2_product_map_monthly_fCO2_decomposition %>%
#   filter(year == 2023) %>%
#   mutate(product == "pco2 product") %>%
#   group_split(product) %>%
#   head(1) %>%
#   map(
#     ~ map +
#       geom_tile(data = .x,
#                 aes(lon, lat, fill = resid)) +
#       labs(title = .x$product) +
#       scale_fill_gradientn(
#         colours = cmocean("curl")(100),
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks("sfco2"),
#         limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
#         oob = squish
#       ) +
#       facet_grid(month ~ name,
#                  labeller = labeller(name = x_axis_labels)) +
#       guides(
#         fill = guide_colorbar(
#           barheight = unit(0.3, "cm"),
#           barwidth = unit(6, "cm"),
#           ticks = TRUE,
#           ticks.colour = "grey20",
#           frame.colour = "grey20",
#           label.position = "top",
#           direction = "horizontal"
#         )
#       ) +
#       theme(legend.title = element_markdown(),
#             legend.position = "top")
#   )
pco2_product_map_annual_fCO2_decomposition <-
  pco2_product_map_monthly_fCO2_decomposition %>% 
  select(year, lat, lon, name, resid) %>% 
  fgroup_by(year, lat, lon, name) %>% 
  fmean()

gc()
             used    (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells    4278597   228.6   41237837  2202.4  125847888  6721.1
Vcells 1682804038 12838.8 4138972802 31577.9 4138965342 31577.8
map +
  geom_tile(data = pco2_product_map_annual_fCO2_decomposition %>%
              filter(year == 2023), aes(lon, lat, fill = resid)) +
  scale_fill_gradientn(
    colours = cmocean("curl")(100),
    rescaler = ~ scales::rescale_mid(.x, mid = 0),
    name = labels_breaks("sfco2"),
    limits = c(
      quantile(pco2_product_map_annual_fCO2_decomposition$resid, .01),
      quantile(pco2_product_map_annual_fCO2_decomposition$resid, .99)
    ),
    oob = squish
  ) +
  facet_wrap(~ name,
             ncol = 2,
             labeller = labeller(name = x_axis_labels)) +
  guides(
    fill = guide_colorbar(
      barheight = unit(0.3, "cm"),
      barwidth = unit(6, "cm"),
      ticks = TRUE,
      ticks.colour = "grey20",
      frame.colour = "grey20",
      label.position = "top",
      direction = "horizontal"
    )
  ) +
  theme(legend.title = element_markdown(), legend.position = "top")

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Flux attribution

pco2_product_map_monthly_flux_attribution <-
  flux_attribution(pco2_product_map_monthly_anomaly,
                   year, month, lon, lat)

# pco2_product_map_monthly_flux_attribution %>%
#   filter(year == 2023) %>%
#   drop_na() %>%
#   mutate(product == "pco2 product") %>%
#   group_split(product) %>%
#   head(1) %>%
#   map(
#     ~ map +
#       geom_tile(data = .x,
#                 aes(lon, lat, fill = resid)) +
#       labs(subtitle = .x$product) +
#       scale_fill_gradientn(
#         colours = cmocean("curl")(100),
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks("fgco2"),
#         limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
#         oob = squish
#       ) +
#       theme(legend.title = element_markdown(),
#             legend.position = "bottom") +
#       facet_grid(month ~ name,
#                  labeller = labeller(name = x_axis_labels)) +
#       guides(
#         fill = guide_colorbar(
#           barheight = unit(0.3, "cm"),
#           barwidth = unit(6, "cm"),
#           ticks = TRUE,
#           ticks.colour = "grey20",
#           frame.colour = "grey20",
#           label.position = "top",
#           direction = "horizontal"
#         )
#       ) +
#       theme(legend.title = element_markdown(),
#             legend.position = "top",
#             strip.text.x.top = element_markdown())
#   )
pco2_product_map_annual_flux_attribution <-
  pco2_product_map_monthly_flux_attribution %>% 
  group_by(year, lat, lon, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup()

map +
  geom_tile(data = pco2_product_map_annual_flux_attribution %>%
              filter(year == 2023), aes(lon, lat, fill = resid)) +
  scale_fill_gradientn(
    colours = cmocean("curl")(100),
    rescaler = ~ scales::rescale_mid(.x, mid = 0),
    name = labels_breaks("fgco2"),
    limits = c(
      quantile(pco2_product_map_annual_flux_attribution$resid, .01, na.rm = TRUE),
      quantile(pco2_product_map_annual_flux_attribution$resid, .99, na.rm = TRUE)
    ),
    oob = squish
  ) +
  theme(legend.title = element_markdown(), legend.position = "bottom") +
  facet_wrap(~ name,
             ncol = 2,
             labeller = labeller(name = x_axis_labels)) +
  guides(
    fill = guide_colorbar(
      barheight = unit(0.3, "cm"),
      barwidth = unit(6, "cm"),
      ticks = TRUE,
      ticks.colour = "grey20",
      frame.colour = "grey20",
      label.position = "top",
      direction = "horizontal"
    )
  ) +
  theme(
    legend.title = element_markdown(),
    legend.position = "top",
    strip.text.x.top = element_markdown()
    
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27
gc()
             used    (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells    4296525   229.5   32990270  1761.9  125847888  6721.1
Vcells 1928041834 14709.8 4138972802 31577.9 4138965342 31577.8
pco2_product_map_monthly_anomaly %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_map_monthly_anomaly.csv"
    )
  )

pco2_product_map_annual_flux_attribution %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_map_annual_flux_attribution.csv"
    )
  )

pco2_product_map_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_map_annual_fCO2_decomposition.csv"
    )
  )

pco2_product_map_monthly_flux_attribution %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_map_monthly_flux_attribution.csv"
    )
  )

pco2_product_map_monthly_fCO2_decomposition %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_map_monthly_fCO2_decomposition.csv"
    )
  )

rm(pco2_product_map_annual_flux_attribution,
   pco2_product_map_annual_fCO2_decomposition)

gc()

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of the linear/quadratic fits.

Hovmoeller plots are first presented as annual means, and than as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

2023 annual anomalies

pco2_product_hovmoeller_annual_anomaly <-
  pco2_product_hovmoeller_annual %>%
  anomaly_determination(lat) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_annual_anomaly %>%
  # filter(name == "mld") %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x, aes(year, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual mean anomalies", y = "Latitude") +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

2023 monthly anomalies

pco2_product_hovmoeller_monthly_anomaly <-
  pco2_product_hovmoeller_monthly %>%
  select(-c(decimal)) %>% 
  anomaly_determination(lat, month) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_monthly_anomaly <-
  pco2_product_hovmoeller_monthly_anomaly %>%
  mutate(decimal = year + (month - 1) / 12)
  
pco2_product_hovmoeller_monthly_anomaly %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Three years prior 2023

pco2_product_hovmoeller_monthly_anomaly %>%
  filter(between(year, 2023-2, 2023)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27
pco2_product_hovmoeller_monthly_anomaly %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_hovmoeller_monthly_anomaly.csv"
    )
  )

rm(
  pco2_product_hovmoeller_annual,
  pco2_product_hovmoeller_monthly,
  pco2_product_hovmoeller_annual_anomaly,
  pco2_product_hovmoeller_monthly_anomaly
)

gc()

Regional means and integrals

The following plots show regionally averaged (or integrated) values of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit.

Anomalies are first presented relative to the predicted annual mean of each year, hence preserving the seasonality. Furthermore, anomalies are presented relative to the predicted monthly mean values, such that the mean seasonality is removed.

2023 absolute values

Global non-polar

fig.height <- pco2_product_biome_monthly %>% 
  distinct(name) %>% 
  nrow()

fig.height <- (fig.height + 2) * 0.1
pco2_product_biome_monthly %>%
  filter(biome %in% "Global non-polar") %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Global non-polar") +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Key biomes

pco2_product_biome_monthly %>%
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

2023 anomalies

Global non-polar

pco2_product_biome_monthly_detrended <-
  full_join(pco2_product_biome_monthly,
            pco2_product_biome_monthly_anomaly %>% select(-c(value, resid))) %>%
  mutate(resid = value - fit)

pco2_product_biome_monthly_detrended %>% 
  filter(biome %in% "Global non-polar") %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Global non-polar") +
  facet_wrap(
    name ~ .,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    strip.position = "left",
    ncol = 2
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_biome_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Key biomes

pco2_product_biome_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_biome_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, resid, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = paste("Anomalies from predicted monthly mean |", .x$biome)) +
      facet_wrap(
        name ~ .,
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        strip.position = "left",
        ncol = 2
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )

pco2_product_biome_monthly_detrended %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_biome_monthly_detrended.csv"
    )
  )

2023 anomaly correlation

The following plots aim to unravel the correlation between regionally integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot integrated fluxes separately for each region. Secondly, we normalize the monthly anomalies to the spread (expressed as standard deviation) of the residuals from the fit.

Annual anomalies

Absolute

pco2_product_biome_annual_anomaly %>%
  filter(biome == "Global non-polar") %>%
  select(-c(value, fit)) %>% 
  pivot_wider(values_from = resid) %>% 
  pivot_longer(-c(year, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(!between(year, 2023-1, 2023)),
             aes(fill = year),
             shape = 21) +
  geom_smooth(
    data = . %>% filter(!between(year, 2023-1, 2023)),
    method = "lm",
    se = FALSE,
    fullrange = TRUE,
    aes(col = paste("Regression fit\nexcl.", 2023))
  ) +
  scale_color_grey() +
  scale_fill_grayC()+
  new_scale_fill() +
  geom_point(data = . %>% filter(between(year, 2023-1, 2023)),
             aes(fill = as.factor(year)),
             shape = 21, size = 2)  +
  scale_fill_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  labs(title = "Global non-polar integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Monthly anomalies

Absolute

pco2_product_biome_monthly_detrended_anomaly <-
  pco2_product_biome_monthly_detrended %>%
  select(year, month, biome, name, resid) %>%
  pivot_wider(names_from = name,
              values_from = resid)


pco2_product_biome_monthly_detrended_anomaly %>%
  filter(biome == "Global non-polar") %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(year != 2023),
             aes(col = paste(min(year), max(year), sep = "-")),
             alpha = 0.2) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    aes(col = paste(min(year), max(year), sep = "-")),
    method = "lm",
    se = FALSE,
    fullrange = TRUE
  )  +
  scale_color_grey(name = "") +
  new_scale_color() +
  geom_path(data = . %>% filter(year == 2023),
            aes(col = as.factor(month), group = 1))  +
  geom_point(data = . %>% filter(year == 2023),
             aes(fill =  as.factor(month)),
             shape = 21,
             size = 3)  +
  scale_color_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 2023)) +
  scale_fill_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 2023)) +
  labs(title = "Global non-polar integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank()
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_detrended_anomaly %>%
  filter(!(biome %in% c(key_biomes, "Global non-polar"))) %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  filter(name %in% c("temperature", "chl", "dfco2", "kw_sol")) %>% 
  group_split(name) %>%
  head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free") +
      labs(
        title = "Biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Relative to spread

pco2_product_biome_monthly_detrended_anomaly_spread <-
  pco2_product_biome_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  filter(year != 2023) %>%
  group_by(month, biome, name) %>%
  summarise(spread = sd(value, na.rm = TRUE)) %>%
  ungroup()



pco2_product_biome_monthly_detrended_anomaly_relative <-
  full_join(
    pco2_product_biome_monthly_detrended_anomaly_spread,
    pco2_product_biome_monthly_detrended_anomaly %>%
      pivot_longer(-c(month, biome, year))
  )

pco2_product_biome_monthly_detrended_anomaly_relative <-
  pco2_product_biome_monthly_detrended_anomaly_relative %>%
  mutate(value = value / spread) %>%
  select(-spread) %>%
  pivot_wider() %>%
  pivot_longer(-c(month, biome, year, fgco2_int))



pco2_product_biome_monthly_detrended_anomaly_relative %>%
  filter(name %in% c("temperature", "chl", "dfco2", "kw_sol")) %>% 
  group_split(name) %>%
  head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_vline(xintercept = 0) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      facet_wrap( ~ biome, ncol = 3) +
      coord_fixed() +
      labs(
        title = "Biome integrated fluxes normalized to spread",
        y = str_split_i(labels_breaks("fgco2_int")$i_legend_title, "<br>", i = 1),
        x = str_split_i(labels_breaks(.x %>% distinct(name))$i_legend_title, "<br>", i = 1)
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

fCO2 decomposition

biome_mask <-
  bind_rows(
    biome_mask,
    biome_mask %>% 
      filter(!str_detect(biome, "SO-SPSS|SO-ICE|Arctic")) %>% 
      mutate(biome = "Global non-polar")
  )

pco2_product_biome_monthly_fCO2_decomposition <-
  full_join(pco2_product_map_monthly_fCO2_decomposition,
            biome_mask,
            relationship = "many-to-many") %>% 
  group_by(year, month, biome, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup() %>% 
  drop_na()


pco2_product_biome_annual_fCO2_decomposition <-
  pco2_product_biome_monthly_fCO2_decomposition %>%
  group_by(year, biome, name) %>%
  summarise(resid = mean(resid)) %>%
  ungroup()


pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  p_season(title  = paste("Anomalies from predicted monthly mean"))

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
e30251a jens-daniel-mueller 2025-02-27

Flux attribution

Seasonal

pco2_product_biome_monthly_flux_attribution <-
  full_join(pco2_product_map_monthly_flux_attribution,
            biome_mask,
            relationship = "many-to-many") %>% 
  group_by(year, month, biome, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup() %>% 
  drop_na()

pco2_product_biome_monthly_flux_attribution_total <-
  full_join(pco2_product_map_monthly_anomaly %>% 
              filter(name == "fgco2") %>% 
              mutate(name = "resid_fgco2"),
            biome_mask,
            relationship = "many-to-many") %>% 
  group_by(year, month, biome, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup() %>% 
  drop_na()

pco2_product_biome_monthly_flux_attribution <-
  bind_rows(
    pco2_product_biome_monthly_flux_attribution,
    pco2_product_biome_monthly_flux_attribution_total
  )


pco2_product_biome_annual_flux_attribution <-
  pco2_product_biome_monthly_flux_attribution %>%
  group_by(year, biome, name) %>%
  summarise(resid = mean(resid)) %>%
  ungroup()


pco2_product_biome_monthly_flux_attribution %>%
  filter(year == 2023,
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_path(
    aes(month, resid)
  ) +
  geom_point(
    aes(month, resid),
    shape = 21,
    alpha = 0.5,
    col = "grey30"
  ) +
  scale_y_continuous(breaks = seq(-10,10,0.2)) +
  scale_x_continuous(position = "top", breaks = seq(1,12,3)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
             scales = "free_y",
             space = "free_y", 
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_flux_attribution %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  p_season(title  = paste("Anomalies from predicted monthly mean"))

Version Author Date
bdc4da6 jens-daniel-mueller 2025-02-28
ca52e03 jens-daniel-mueller 2025-02-27
e30251a jens-daniel-mueller 2025-02-27

Annual

pco2_product_biome_annual_flux_attribution <-
  full_join(
    pco2_product_biome_annual_flux_attribution %>%
      filter(year == 2023) %>%
      select(-year),
    pco2_product_biome_annual_flux_attribution %>%
      filter(year != 2023) %>%
      group_by(biome, name) %>%
      summarise(resid_mean = mean(abs(resid))) %>%
      ungroup()
  )

# pco2_product_biome_annual_flux_attribution %>%
#   filter(biome %in% c("Global non-polar", key_biomes)) %>%
#   mutate(product == "pco2 product") %>%
#   group_split(product) %>%
#   # head(1) %>%
#   map(
#     ~ ggplot(data = .x) +
#       geom_col(aes("x", resid),
#                position = "dodge2") +
#       geom_col(
#         aes(
#           "x",
#           resid_mean * sign(resid),
#           col = paste0("Mean\nexcl.",2023)
#         ),
#         position = "dodge2",
#         fill = "transparent"
#       ) +
#       labs(y = labels_breaks(unique("fgco2"))$i_legend_title,
#            title = .x$biome) +
#       facet_grid(
#         biome~name,
#         labeller = labeller(name = x_axis_labels),
#         switch = "x"
#       ) +
#       scale_color_grey() +
#       theme(
#         legend.title = element_blank(),
#         axis.text.x = element_blank(),
#         axis.ticks.x = element_blank(),
#         axis.title.x = element_blank(),
#         axis.title.y = element_markdown(),
#         strip.text.x.bottom = element_markdown(),
#         strip.placement = "outside",
#         strip.background.x = element_blank(),
#         legend.position = "top"
#       )
#   )
pco2_product_biome_annual_flux_attribution %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_biome_annual_flux_attribution.csv"
    )
  )

pco2_product_biome_monthly_flux_attribution %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_biome_monthly_flux_attribution.csv"
    )
  )

pco2_product_biome_annual_fCO2_decomposition %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_biome_annual_fCO2_decomposition.csv"
    )
  )

pco2_product_biome_monthly_fCO2_decomposition %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_biome_monthly_fCO2_decomposition.csv"
    )
  )

rm(
  pco2_product_biome_annual_flux_attribution,
  pco2_product_biome_monthly_flux_attribution,
  pco2_product_biome_annual_fCO2_decomposition,
  pco2_product_biome_monthly_fCO2_decomposition
)

gc()

Zonal mean sections

The following analysis is available for GOBMs only.

Annual means

2023 anomaly

pco2_product_zonal_mean_annual <-   pco2_product_zonal_mean %>%
  pivot_longer(-c(region, depth, lat, time, year, month)) %>%
  group_by(region, lat, depth, year, name) %>%
  summarise(value = mean(value)) %>%
  ungroup() %>%
  drop_na() %>%
  mutate(region = str_to_title(region))

pco2_product_zonal_mean_annual_anomaly <-
  pco2_product_zonal_mean_annual %>% 
  anomaly_determination(region, lat, depth)

pco2_product_zonal_mean_annual_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(3) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(lat, depth, z = resid)) +
      scale_fill_discrete_divergingx(name = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      guides(fill = guide_colorsteps(
        barheight = unit(8, "cm"),
        show.limits = TRUE
      )) +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      scale_x_continuous(breaks = seq(-100, 100, 20)) +
      coord_cartesian(expand = 0) +
      facet_wrap( ~ region, ncol = 1) +
      labs(y = "Depth (m)") +
      theme(legend.title = element_markdown())
  )
pco2_product_zonal_mean_annual_anomaly %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_zonal_mean_sections_annual.csv"
    )
  )

Biome profiles

The following analysis is available for GOBMs only.

Annual means

2023 anomaly

pco2_product_profiles_annual <-   pco2_product_profiles %>%
  pivot_longer(-c(biome, depth, time, year, month)) %>%
  group_by(biome, depth, year, name) %>%
  summarise(value = mean(value)) %>%
  ungroup() %>%
  drop_na()

pco2_product_profiles_annual_anomaly <-
  pco2_product_profiles_annual %>% 
  anomaly_determination(biome, depth)

pco2_product_profiles_annual_anomaly %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_path(aes(resid, depth, group = year), col = "grey30", alpha = 0.5) +
      geom_path(data = .x %>% filter(year == 2023),
                aes(resid, depth, col = as.factor(year)),
                linewidth = 1) +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      facet_wrap( ~ biome) +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
pco2_product_profiles_annual_anomaly %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_profiles_annual.csv"
    )
  )

Monthly means

2023 anomaly

pco2_product_profiles_monthly <-   pco2_product_profiles %>%
  pivot_longer(-c(biome, depth, time, year, month)) %>%
  group_by(biome, depth, year, month, name) %>%
  summarise(value = mean(value)) %>%
  ungroup() %>%
  drop_na()

pco2_product_profiles_monthly_anomaly <-
  pco2_product_profiles_monthly %>% 
  anomaly_determination(biome, depth, month)

pco2_product_profiles_monthly_anomaly %>%
  filter(year == 2023) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_vline(xintercept = 0) +
      geom_path(aes(resid, depth, col = as.factor(month)),
                linewidth = 1) +
      scale_color_scico_d(palette = "hawaii") +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50, 100, 200, 400)) +
      facet_wrap(~ biome,
                 scales = "free_x") +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
pco2_product_profiles_monthly_anomaly %>%
  write_csv(
    paste0(
      "../data/",
      "CMEMS_GCB",
      "_",
      "2023",
      "_profiles_monthly.csv"
    )
  )

sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: openSUSE Leap 15.6

Matrix products: default
BLAS/LAPACK: /usr/local/OpenBLAS-0.3.28/lib/libopenblas_haswellp-r0.3.28.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Europe/Zurich
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggh4x_0.3.0         scales_1.3.0        cmocean_0.3-2      
 [4] ggtext_0.1.2        broom_1.0.7         khroma_1.14.0      
 [7] ggnewscale_0.5.0    tidync_0.4.0        terra_1.8-5        
[10] sf_1.0-19           rnaturalearth_1.0.1 geomtextpath_0.1.4 
[13] colorspace_2.1-1    marelac_2.1.11      shape_1.4.6.1      
[16] ggforce_0.4.2       metR_0.16.0         scico_1.5.0        
[19] patchwork_1.3.0     collapse_2.0.18     lubridate_1.9.3    
[22] forcats_1.0.0       stringr_1.5.1       dplyr_1.1.4        
[25] purrr_1.0.2         readr_2.1.5         tidyr_1.3.1        
[28] tibble_3.2.1        ggplot2_3.5.1       tidyverse_2.0.0    
[31] workflowr_1.7.1    

loaded via a namespace (and not attached):
 [1] DBI_1.2.3               rlang_1.1.4             magrittr_2.0.3         
 [4] git2r_0.35.0            e1071_1.7-16            compiler_4.4.2         
 [7] mgcv_1.9-1              getPass_0.2-4           systemfonts_1.1.0      
[10] callr_3.7.6             vctrs_0.6.5             pkgconfig_2.0.3        
[13] crayon_1.5.3            fastmap_1.2.0           backports_1.5.0        
[16] ncmeta_0.4.0            labeling_0.4.3          utf8_1.2.4             
[19] promises_1.3.2          rmarkdown_2.29          markdown_1.13          
[22] tzdb_0.4.0              ps_1.8.1                oce_1.8-3              
[25] gsw_1.2-0               bit_4.5.0               xfun_0.49              
[28] cachem_1.1.0            jsonlite_1.8.9          later_1.4.1            
[31] tweenr_2.0.3            parallel_4.4.2          R6_2.5.1               
[34] RColorBrewer_1.1-3      bslib_0.8.0             stringi_1.8.4          
[37] jquerylib_0.1.4         Rcpp_1.0.13-1           knitr_1.49             
[40] seacarb_3.3.3           Matrix_1.7-1            splines_4.4.2          
[43] httpuv_1.6.15           timechange_0.3.0        tidyselect_1.2.1       
[46] RNetCDF_2.9-2           rstudioapi_0.17.1       yaml_2.3.10            
[49] codetools_0.2-20        processx_3.8.4          lattice_0.22-6         
[52] withr_3.0.2             evaluate_1.0.1          rnaturalearthdata_1.0.0
[55] units_0.8-5             proxy_0.4-27            polyclip_1.10-7        
[58] xml2_1.3.6              pillar_1.9.0            whisker_0.4.1          
[61] CFtime_1.4.1            KernSmooth_2.23-24      checkmate_2.3.2        
[64] ncdf4_1.23              generics_0.1.3          vroom_1.6.5            
[67] rprojroot_2.0.4         hms_1.1.3               commonmark_1.9.2       
[70] munsell_0.5.1           class_7.3-22            glue_1.8.0             
[73] tools_4.4.2             data.table_1.16.2       fs_1.6.5               
[76] grid_4.4.2              nlme_3.1-166            cli_3.6.3              
[79] SolveSAPHE_2.1.0        textshaping_0.4.0       fansi_1.0.6            
[82] viridisLite_0.4.2       gtable_0.3.6            sass_0.4.9             
[85] digest_0.6.37           classInt_0.4-10         farver_2.1.2           
[88] memoise_2.0.1           htmltools_0.5.8.1       lifecycle_1.0.4        
[91] httr_1.4.7              here_1.0.1              gridtext_0.1.5         
[94] bit64_4.5.2             MASS_7.3-61