Last updated: 2025-03-10

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version fb85a52. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data
    Ignored:    output/

Unstaged changes:
    Modified:   analysis/child/pCO2_product_synopsis.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/pco2_product_synopsis_2023_GCB.Rmd) and HTML (docs/pco2_product_synopsis_2023_GCB.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html fb85a52 jens-daniel-mueller 2025-03-10 Build site.
html ae5b6a4 jens-daniel-mueller 2025-03-10 Build site.
html b9e8f8c jens-daniel-mueller 2025-03-10 Build site.
html 60900ed jens-daniel-mueller 2025-03-07 Build site.
html dd25c0c jens-daniel-mueller 2025-03-06 Build site.
html b76a7c8 jens-daniel-mueller 2025-03-04 Build site.
html 9fe7d3d jens-daniel-mueller 2025-03-02 Build site.
Rmd 481d3cc jens-daniel-mueller 2025-03-02 rerun all analysis
html 9276be7 jens-daniel-mueller 2025-03-02 Build site.
html 417f35d jens-daniel-mueller 2025-02-28 Build site.
html d532d40 jens-daniel-mueller 2025-02-28 Build site.
Rmd f244698 jens-daniel-mueller 2025-02-28 ingest LDEO-HDP
html 518e3d0 jens-daniel-mueller 2025-02-27 Build site.
Rmd 931d9f4 jens-daniel-mueller 2025-02-27 ingest GCB fco2 products

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")
pco2_product_list <- c("OceanSODA", "SOM-FFN", "CMEMS", "fco2residual")
# "fCO2-Residual"

gobm_product_list <- c("ETHZ-CESM", "FESOM-REcoM")

files <- list.files(here::here("data/"), pattern = "FESOM-REcoM")

file_types <- str_remove(files, "FESOM-REcoM_2023_")
GCB_products = TRUE
pCO2_product_synopsis <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_synopsis.Rmd"),
    year_anom = 2023
  )

Read data

map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

key_biomes <- 
key_biomes[!str_detect(key_biomes, "NP")]


biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))

biome_mask_print <-
  biome_mask %>%
  filter(!str_detect(biome, "SO-SPSS|SO-ICE|Arctic")) %>%
  # filter(!str_detect(biome, "SO-ICE|Arctic")) %>%
  select(lon, lat)

region_biomes <-
  read_rds(here::here("data/region_biomes.rds"))
nino_sst <- read_table(here::here("data/nino34sst.txt"))

nino_sst <-
  nino_sst %>%
  select(year = YR,
         month = MON,
         resid = ANOM_3)
co2_annmean_gl <- read_csv(here::here("data/co2_annmean_gl.csv"),
                           skip = 37)
co2_gr_gl <- read_csv(here::here("data/co2_gr_gl.csv"),
                      skip = 43)
name_core <- c("fgco2", "fgco2_int", "fgco2_hov",
               # "sfco2", "atm_fco2", 
               "dfco2",
               # "kw_sol", 
               "temperature", 
               # "salinity",
               # "dissic", "talk", "sdissic", "stalk", "cstar", 
               "sdissic_stalk",
               "no3", "o2",
               "mld", "thetao", 
               # "so",
               "intpp", "chl",
               "sfco2_therm","sfco2_nontherm","sfco2_total",
               "resid_fgco2_dfco2", "resid_fgco2_kw_sol", "resid_fgco2_dfco2_kw_sol")



all_product_list <- c(pco2_product_list, gobm_product_list)

color_products <- c(
  "OceanSODAv2" = "#672933",
  "OceanSODA" = "#672933",
  "SOM-FFN" = "#d1495b",
  "fco2residual" = "#edae49",
  "fCO2-Residual" = "#edae49",
  "LDEO-HPD" = "#edae49",
  "CMEMS" = "#AD8E55",
  "ETHZ-CESM" = "#66a182",
  "FESOM-REcoM" = "#00798c",
  "CSIR-ML6" = "grey10",
  "JMA-MLR" = "grey30",
  "NIES-ML3" = "grey50",
  "UExP-FNN-U" = "grey70"
)

shape_products <- c(
  "OceanSODAv2" = 0,
  "OceanSODA" = 0,
  "SOM-FFN" = 1,
  "fco2residual" = 2,
  "fCO2-Residual" = 2,
  "LDEO-HPD" = 2,
  "CMEMS" = 5,
  "ETHZ-CESM" = 0,
  "FESOM-REcoM" = 1,
  "CSIR-ML6" = 6,
  "JMA-MLR" = 7,
  "NIES-ML3" = 9,
  "UExP-FNN-U" = 10
)

warm_color <- "#c33c57"
cold_color <- "#3f6fb3"
trend_color <- "#66a182"


warm_cool_gradient <- 
rev(c(
  "#61195a",
  "#6f185f",
  "#8d1e62",
  "#aa2960",
  "#c33c57",
  "#da5351",
  "#e77155",
  "#f09264",
  "#f09264",
  "#fbd297",
  "#fefefe",
  "#c6e8ea",
  "#97d4db",
  "#79bcd0",
  "#5ca2c6",
  "#4a88bc",
  "#3f6fb3",
  "#3e56a2",
  "#3c3f82",
  "#2f2c5a",
  "#272648"
))

# cmocean("balance")(100)
for(i_file_type in file_types) {
  
  # print(i_file_type)
  # i_file_type <- file_types[1]
  
  files <- list.files(here::here("data"),
                      pattern = paste(2023, i_file_type, sep = "_"),
                      full.names = TRUE)
  
  if (GCB_products) {
    files <- str_subset(files, paste("_GCB_", paste(gobm_product_list, collapse = "|"), sep = "|"))
    files <- str_subset(files, paste(
      paste(pco2_product_list, collapse = "|"),
      paste(gobm_product_list, collapse = "|"),
      sep = "|"
    ))
  } else {
    files <- str_subset(files, "_GCB_", negate = TRUE)
  }
  

  pco2_product <-
    read_csv(files, id = "product")
  
  # pco2_product %>% 
  #   distinct(product)
  
  pco2_product <-
    pco2_product %>%
    mutate(
      product = str_extract(
        product,
        paste(all_product_list, collapse = "|")
      )
    )
  
  if (!str_detect(files[1], "slope|_temperature_predict")) {
    pco2_product <-
      pco2_product %>%
      mutate(
        name = factor(name, levels = name_core),
        product = factor(product, levels = all_product_list)
      ) %>%
      filter(!is.na(name))
  } else {
    pco2_product <-
      pco2_product %>%
      mutate(product = factor(product, levels = all_product_list))
  }
  
  i_file_type <- str_remove(i_file_type, ".csv")
  assign(paste("pco2_product", i_file_type, sep = "_"), pco2_product)

}

Define labels and breaks

labels_breaks <- function(i_name) {
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "dfco2") {
    i_legend_title <- "ΔfCO<sub>2</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "atm_fco2") {
    i_legend_title <- "fCO<sub>2,atm</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  if (i_name == "sol") {
    i_legend_title <- "K<sub>0</sub> anom.<br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "kw") {
    i_legend_title <- "k<sub>w</sub> anom.<br>(m yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "kw_sol") {
    i_legend_title <- "k<sub>w</sub> K<sub>0</sub> anom.<br>(mol yr<sup>-1</sup> m<sup>-2</sup> µatm<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.015, 0.015, 0.003), Inf)
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "intpp") {
    i_legend_title <- "NPP<sub>int</sub> anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-3, 3, 0.5), Inf)
  }
  
  if (i_name == "no3") {
    i_legend_title <- "NO<sub>3</sub> anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-1.5, 1.5, 0.3), Inf)
  }
  
  if (i_name == "o2") {
    i_legend_title <- "O<sub>2</sub> anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "dissic") {
    i_legend_title <- "DIC anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sdissic") {
    i_legend_title <- "sDIC anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "cstar") {
    i_legend_title <- "C* anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "talk") {
    i_legend_title <- "TA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "stalk") {
    i_legend_title <- "sTA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sdissic_stalk") {
    i_legend_title <- "sDIC - sTA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sfco2_total") {
    i_legend_title <- "total"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "sfco2_therm") {
    i_legend_title <- "thermal"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "sfco2_nontherm") {
    i_legend_title <- "non-thermal"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "slope") {
    i_legend_title <- "Slope FCO<sub>2</sub> anom. / SST anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup> °C<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-1, 1, 0.25), Inf)
  }

  if (i_name == "fgco2_predict") {
    i_legend_title <- "FCO<sub>2</sub> anom. pred.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(PgC yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2_predict_int") {
    i_legend_title <- "FCO<sub>2</sub> anom. pred.<br>(PgC yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp. anom.<br>(°C)"
    i_breaks <- c(-Inf, seq(-1.6, 1.6, 0.4), Inf)
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST anom.<br>(°C)"
    i_breaks <- c(-Inf, seq(-1.6, 1.6, 0.4), Inf)
  }
  
  if (i_name == "salinity") {
    i_legend_title <- "SSS anom."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "so") {
    i_legend_title <- "Salinity anom."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "chl") {
    i_legend_title <- "lg(Chl-a) anom.<br>(lg(mg m<sup>-3</sup>))"
    i_breaks <- c(-Inf, seq(-0.2, 0.2, 0.05), Inf)
  }
  
  if (i_name == "mld") {
    i_legend_title <- "MLD anom.<br>(m)"
    i_breaks <- c(-Inf, seq(-40, 40, 10), Inf)
  }
  
  if (i_name == "press") {
    i_legend_title <- "pressure<sub>atm</sub> anom.<br>(Pa)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "wind") {
    i_legend_title <- "Wind anom.<br>(m sec<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "SSH") {
    i_legend_title <- "SSH anom.<br>(m)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fice") {
    i_legend_title <- "Sea ice anom.<br>(%)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  
  if (i_name == "resid_fgco2") {
    i_legend_title <-
      "Observed"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_dfco2") {
    i_legend_title <-
      "ΔfCO<sub>2</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_dfco2_kw_sol") {
    i_legend_title <-
      "ΔfCO<sub>2</sub> ⨯ k<sub>w</sub> K<sub>0</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_sum") {
    i_legend_title <-
      "∑"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_offset") {
    i_legend_title <-
      "Obs. - ∑"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  all_labels_breaks <- lst(i_legend_title, i_breaks)
  
  return(all_labels_breaks)
  
}

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "dfco2" = labels_breaks("dfco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "kw_sol" = labels_breaks("kw_sol")$i_legend_title,
    "intpp" = labels_breaks("intpp")$i_legend_title,
    "no3" = labels_breaks("no3")$i_legend_title,
    "o2" = labels_breaks("o2")$i_legend_title,
    "dissic" = labels_breaks("dissic")$i_legend_title,
    "sdissic" = labels_breaks("sdissic")$i_legend_title,
    "cstar" = labels_breaks("cstar")$i_legend_title,
    "talk" = labels_breaks("talk")$i_legend_title,
    "stalk" = labels_breaks("stalk")$i_legend_title,
    "sdissic_stalk" = labels_breaks("sdissic_stalk")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "sfco2_total" = labels_breaks("sfco2_total")$i_legend_title,
    "sfco2_therm" = labels_breaks("sfco2_therm")$i_legend_title,
    "sfco2_nontherm" = labels_breaks("sfco2_nontherm")$i_legend_title,
    "fgco2" = labels_breaks("fgco2")$i_legend_title,
    "slope" = labels_breaks("slope")$i_legend_title,
    "fgco2_predict" = labels_breaks("fgco2_predict")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "fgco2_predict_int" = labels_breaks("fgco2_predict_int")$i_legend_title,
    "thetao" = labels_breaks("thetao")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title,
    "salinity" = labels_breaks("salinity")$i_legend_title,
    "so" = labels_breaks("so")$i_legend_title,
    "chl" = labels_breaks("chl")$i_legend_title,
    "mld" = labels_breaks("mld")$i_legend_title,
    "press" = labels_breaks("press")$i_legend_title,
    "wind" = labels_breaks("wind")$i_legend_title,
    "SSH" = labels_breaks("SSH")$i_legend_title,
    "fice" = labels_breaks("fice")$i_legend_title,
    "resid_fgco2" = labels_breaks("resid_fgco2")$i_legend_title,
    "resid_fgco2_dfco2" = labels_breaks("resid_fgco2_dfco2")$i_legend_title,
    "resid_fgco2_kw_sol" = labels_breaks("resid_fgco2_kw_sol")$i_legend_title,
    "resid_fgco2_dfco2_kw_sol" = labels_breaks("resid_fgco2_dfco2_kw_sol")$i_legend_title,
    "resid_fgco2_sum" = labels_breaks("resid_fgco2_sum")$i_legend_title,
    "resid_fgco2_offset" = labels_breaks("resid_fgco2_offset")$i_legend_title
  )

# create axis labels for absolute values by removing anom.
x_axis_labels_abs <- x_axis_labels
x_axis_labels_abs <- str_replace_all(x_axis_labels_abs, " anom.", "") 
names(x_axis_labels_abs) <- names(x_axis_labels)

Functions

Seasonality plots

p_season <- function(df, 
                     dim_row = "name", 
                     dim_col = "product", 
                     title = NULL, 
                     var = "resid",
                     scales = "free_y") {
  
  p <- ggplot(data = df,
              aes(month, !!ensym(var)))
  
  if(var == "resid"){
      p <- p +
        geom_hline(yintercept = 0, linewidth =0.5)
    
  }
  
  
  
  p <- p +
      geom_path(data = . %>% filter(year != 2023),
                aes(group = as.factor(year),
                    col = as.factor(paste(min(year), max(year), sep = "-"))), 
                alpha = 0.5)+
      geom_path(data = . %>% 
                  filter(year != 2023) %>% 
                  group_by_at(vars(month, dim_col, dim_row)) %>% 
                  summarise(!!ensym(var) := mean(!!ensym(var))),
                aes(col = "Climatological\nmean"), 
                linewidth = 0.7) +
    scale_color_manual(values = c("grey60", "grey10"),
                       guide = guide_legend(order = 2,
                                            reverse = TRUE)) +
    new_scale_color()+
    geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(year)),
                linewidth = 1.2) +
      scale_color_manual(
        values = warm_color,
        guide = guide_legend(order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = title,
           x = "Month")
  
    if(df %>% filter(name == "fgco2") %>% nrow() > 0 & "value" %in% names(df)){
    
    df_sink <- df %>% 
      filter(year == 2023,
             name == "fgco2")
    
      p <- p +
          geom_point(data = df_sink %>% filter(value < 0),
             aes(shape = "Sink"), fill = "white") +
          geom_point(data = df_sink %>% filter(value >= 0),
             aes(shape = "Source"), fill = "white") +
        scale_shape_manual(values = c(25,24))
    
  }
  
  
  if (!(is.null(dim_col))) {
    p <- p +
      facet_grid2(
        as.formula(paste(dim_row, "~", dim_col)),
        scales = scales,
        # independent = "y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
    
    
  } else {
    p <- p +
      facet_grid(
        as.formula(paste(dim_row, "~ .")),
        scales = scales,
        # independent = "y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
  }
  
  p <- p +
    theme(
      strip.text.y.left = element_markdown(),
      strip.placement = "outside",
      strip.background.y = element_blank(),
      axis.title.y = element_blank(),
      legend.title = element_blank(),
      axis.text.y.right = element_blank()
    ) 
    # scale_y_continuous(sec.axis = dup_axis())
  
  p
  
}

fCO2 decomposition

fco2_decomposition <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  # group_by <- quos(biome, year, month)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    df %>%
    filter(name %in% c("temperature", "sfco2"))
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "temperature") %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid),
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "sfco2") %>%
        select(-c(value, resid)) %>%
        pivot_wider(values_from = fit)
    )
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_therm = (sfco2 * exp(0.0423 * temperature)) - sfco2)
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition,
      df %>%
        filter(name %in% c("sfco2")) %>%
        select(-c(value, fit, name)) %>%
        rename(sfco2_total = resid)
    )
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_nontherm = sfco2_total - sfco2_therm)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    select(-c(temperature, sfco2)) %>%
    pivot_longer(starts_with("sfco2"),
                 values_to = "resid")
  
}

Flux attribution

flux_attribution <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  
  pco2_product_flux_attribution <-
    df %>%
    filter(name %in% c("dfco2", "kw_sol", "fgco2"))
  
  
  pco2_product_flux_attribution <-
    inner_join(
      pco2_product_flux_attribution %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid,
                    names_prefix = "resid_"),
      pco2_product_flux_attribution %>%
        select(-c(value, resid)) %>%
        filter(name != "fgco2") %>%
        pivot_wider(values_from = fit)
    )
  
    pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    mutate(
      resid_fgco2_dfco2 = resid_dfco2 * kw_sol,
      resid_fgco2_kw_sol = resid_kw_sol * dfco2,
      resid_fgco2_dfco2_kw_sol = resid_dfco2 * resid_kw_sol
      # resid_fgco2_sum = resid_fgco2_dfco2 + resid_fgco2_kw_sol + resid_fgco2_dfco2_kw_sol
    )
  
  # pco2_product_flux_attribution <-
  #   pco2_product_flux_attribution %>%
  #   mutate(resid_fgco2_offset = resid_fgco2 - resid_fgco2_sum)
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    select(product, !!!group_by, starts_with("resid_fgco2")) %>%
    pivot_longer(starts_with("resid_"),
                 values_to = "resid")
  
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    filter(str_detect(name, "dfco2|kw_sol")) %>% 
    mutate(name = factor(
      name,
      levels = c(
        "resid_fgco2",
        "resid_fgco2_dfco2",
        "resid_fgco2_kw_sol",
        "resid_fgco2_dfco2_kw_sol",
        "resid_fgco2_sum",
        "resid_fgco2_offset"
      )
    ))
  
}

Robinson map

bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 76, ymin = -54), crs = st_crs(4326))
# bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 85, ymin = -80), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-54,76),
  # lat = c(-80,85),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005


p_map_mdim_robinson <-
  function(df,
           df_uncertainty = NULL,
           dim_row = NULL,
           dim_col = NULL,
           dim_wrap = NULL,
           n_col = NULL,
           var,
           legend_title = NULL,
           breaks = NULL,
           n_labels = 2,
           target_crs = "+proj=robin +over +lon_0=-160",
           col = "divergent",
           col_scale = "warm_cold",
           plot_latitudes = FALSE,
           legend_position = "top") {
    
    if (is.null(dim_col) & is.null(dim_row) & is.null(dim_wrap)) {
      df_raster <- df %>%
        select(lon, lat, all_of(var)) %>% 
        rast(crs = "+proj=longlat")
      
      df_raster <-
        project(df_raster, target_crs)
      
      df_tibble <-
        df_raster %>%
        as.data.frame(xy = TRUE, na.rm = FALSE) %>%
        as_tibble() %>%
        rename(lon = x, lat = y) %>%
        drop_na()
      
      
    } else {
      
      # if (!is.null(dim_col) & !is.null(dim_row) & !is.null(dim_wrap)) {
      #   names_sep <- ";"
      # } else {
      #   names_sep <- NULL
      # }
      
      names_sep <- ";"

      df_raster <- df %>%
        select(lon, lat,
               all_of(c(dim_row, dim_col, dim_wrap)),
               all_of(var)) %>%
        pivot_wider(names_from = all_of(c(dim_row, dim_col, dim_wrap)), 
                    values_from = all_of(var),
                    names_sep = names_sep) %>%
        rast(crs = "+proj=longlat")
      
      
      df_raster <-
        project(df_raster, target_crs)

           
            
      if (length(c(dim_row, dim_col, dim_wrap)) <= 1) {
        names_sep <- NULL
      }

      df_tibble <-
        df_raster %>%
        as.data.frame(xy = TRUE, na.rm = FALSE) %>%
        as_tibble() %>%
        rename(lon = x, lat = y) %>%
        pivot_longer(
          -c(lon, lat),
          names_sep = names_sep,
          names_to = c(dim_row, dim_col, dim_wrap),
          values_to = var
        ) %>%
        drop_na()
      
      
    }
    
    
    if (is.null(legend_title)) {
      legend_title <- var
    }
    
    var <- sym(var)
    
    p_map <- ggplot() +
      geom_raster(data = df_tibble, aes(
        x = lon,
        y = lat,
        fill = cut(!!var, breaks, include.lowest = TRUE)
      ))
    
    
    p_map <- p_map +
      geom_sf(data = worldmap_trans %>% select(-name),
              fill = "grey90",
              col = "grey90") +
      geom_sf(data = coastline_trans, linewidth = 0.3) +
      geom_sf(data = bbox_graticules_trans, linewidth = 0.5)
    
    if (plot_latitudes) {
      p_map <- p_map +
        geom_sf(data = latitude_graticules_trans,
                col = "grey60",
                linewidth = 0.2) +
        geom_sf_text(
          data = latitude_labels_trans,
          aes(label = lat_label),
          size = 3,
          col = "grey60"
        )
    }
    
    if (!is.null(df_uncertainty)) {
      p_map <- p_map +
        geom_sf(
          data = df_uncertainty %>% filter(signif_single == 0),
          col = "grey60",
          size = 0.05
        )
    }
    
    p_map <- p_map +
      coord_sf(
        crs = target_crs,
        ylim = lat_lim,
        xlim = lon_lim,
        expand = FALSE
      )
    
    if (legend_position == "top") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(0.3, "cm"),
            barwidth = unit(8, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "top",
            direction = "horizontal"
          )
        ) +
        theme_void() +
        theme(
          legend.margin=margin(t = .1, b = .1, unit='cm'),
          plot.margin = margin(.1,.1,.1,.1,"cm"),
          panel.spacing = unit(.1,"cm"),
          legend.position = "top",
          legend.title.align = 1,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 1, lineheight = 1.5)
        )
    }
    
    if (legend_position == "bottom") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(0.3, "cm"),
            barwidth = unit(8, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "bottom",
            direction = "horizontal"
          )
        ) +
        theme_void() +
        theme(
          legend.margin=margin(t = .1, b = .1, unit='cm'),
          plot.margin = margin(.1,.1,.1,.1,"cm"),
          panel.spacing = unit(.1,"cm"),
          legend.position = "bottom",
          legend.title.align = 1,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 1, lineheight = 1.5)
        )
    }
    
    if (legend_position == "right") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(6, "cm"),
            barwidth = unit(0.3, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "right",
            direction = "vertical"
          )
        ) +
        theme_void() +
        theme(
          legend.position = "right",
          legend.title.align = 0,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 0, lineheight = 1.5)
        )
    }
    
    if (legend_position == "left") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(6, "cm"),
            barwidth = unit(0.3, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "left",
            direction = "vertical"
          )
        ) +
        theme_void() +
        theme(
          legend.position = "left",
          legend.title.align = 0,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 0, lineheight = 1.5)
        )
    }
    
    if (col == "sequential") {
      breaks_test <- breaks[!breaks == Inf]
      breaks_test <- breaks_test[!breaks_test == -Inf]
      breaks_reverse <-
        abs(first(breaks_test)) < abs(last(breaks_test))
      
      if (breaks_reverse == TRUE) {
        direction_value = 1
        reverse_value = TRUE
      } else{
        direction_value = -1
        reverse_value = FALSE
      }
      
      if (n_labels == 1) {
        labels <- breaks_test
      } else {
        breaks_test[seq_along(breaks_test) %% 2 == 0] <- ""
        labels <- breaks_test
      }
      
      if (col_scale %in% c("viridis", "plasma", "cividis")) {
        p_map <- p_map +
          scale_fill_viridis_d(
            drop = FALSE,
            name = legend_title,
            direction = direction_value,
            option = col_scale,
            labels = unname(labels)
          )
      }
      
    } else {
      
      breaks_test <- breaks[!breaks == Inf]
      breaks_test <- breaks_test[!breaks_test == -Inf]
      
      if (n_labels == 1) {
        labels <- breaks_test
      } else {
        breaks_test[seq_along(breaks_test) %% 2 == 0] <- ""
        labels <- breaks_test
      }
      
      p_map <- p_map +
        scale_fill_gradientn(
          colours = warm_cool_gradient,
          # rescaler = ~ scales::rescale_mid(.x, mid = 0),
          super = ScaleDiscretised,
          name = legend_title,
          labels = unname(labels)
        )
        # colorspace::scale_fill_discrete_divergingx(
        #   palette = "RdBu",
        #   drop = FALSE,
        #   rev = TRUE,
        #   name = legend_title,
        #   labels = unname(labels)
        # )
    }
    
    
    
    if (!(is.null(dim_row) & is.null(dim_col))) {
      if (is.null(dim_col)) {
        dim_col <- "."
      }
      
      if (is.null(dim_row)) {
        dim_row <- "."
      }
      
      p_map <- p_map +
        facet_grid(as.formula(paste(dim_row, "~", dim_col)),
                   labeller = labeller(name = x_axis_labels),
                   switch = "y") +
        theme(strip.text.x.top = element_markdown(),
              strip.text.y.left = element_markdown())
      
    }
    
    if (!is.null(dim_wrap) & is.null(n_col)) {

      p_map <- p_map +
        facet_wrap(as.formula(paste("~", dim_wrap)))
    }
    

    if (!(is.null(dim_wrap) & is.null(n_col))) {
      if (dim_wrap == "name") {
        p_map <- p_map +
          facet_wrap(as.formula(paste("~", dim_wrap)),
                     labeller = labeller(name = x_axis_labels),
                     ncol = n_col) +
          theme(strip.text.x.top = element_markdown())
      } else{
        p_map <- p_map +
          facet_wrap(as.formula(paste("~", dim_wrap)), ncol = n_col) +
          theme(strip.text.x.top = element_markdown())
      }
    }
    
    p_map
    
  }

Maps

The following maps show the anomalies of each variable in 2023 as provided through the fCO2 product. Anomalies are determined based on the predicted value of a linear regression model fit to the available data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

2023 anomaly

pco2_product_map_annual_anomaly <-
  inner_join(
    biome_mask_print,
    pco2_product_map_annual_anomaly
  )

pco2_product_map_annual_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      dim_wrap = "product",
      n_col = 2
    )
  )
[[1]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
518e3d0 jens-daniel-mueller 2025-02-27

[[5]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
518e3d0 jens-daniel-mueller 2025-02-27

[[6]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
518e3d0 jens-daniel-mueller 2025-02-27

[[7]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
518e3d0 jens-daniel-mueller 2025-02-27

[[8]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
518e3d0 jens-daniel-mueller 2025-02-27
plot_list <- 
pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         product == "ETHZ-CESM",
         name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 14,
       height = 11,
       filename = "../output/map_anomaly_ETHZ-CESM.jpg")
plot_list <- 
pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         product == "FESOM-REcoM",
         name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 14,
       height = 11,
       filename = "../output/map_anomaly_FESOM-REcoM.jpg")

rm(plot_list)
pco2_product_map_annual_anomaly_ensemble <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  fgroup_by(name, lon, lat) %>%
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid),
    value_sd = fsd(value),
    value_mean = fmean(value),
    n = fnobs(resid)
  ) %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)

pco2_product_map_annual_anomaly_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_anomaly_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(
    resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
    resid_mean_coarse = fmean(resid_mean, na.rm = TRUE),
    value_sd_coarse = fmean(value_sd, na.rm = TRUE),
    value_mean_coarse = fmean(value_mean, na.rm = TRUE)
  ) %>% 
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_map_annual_anomaly_ensemble_uncertainty <-
  pco2_product_map_annual_anomaly_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )
[[1]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
plot_list <- pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>%
  filter(name %in% c("fgco2", "temperature")) %>% 
  group_split(name) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      legend_position = "bottom",
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )

ggsave(plot = wrap_plots(plot_list,
                         ncol = 2,
                         byrow = FALSE),
       width = 10,
       height = 3,
       filename = "../output/map_anomaly_ensemble_mean_pco2_products.jpg")


pco2_product_map_annual_anomaly_ensemble_uncertainty <-
  pco2_product_map_annual_anomaly_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(value_mean_coarse) < value_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")

pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>%
  filter(name %in% c("fgco2")) %>% 
  group_split(name) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>%
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "value_mean",
      legend_title = str_remove(
        labels_breaks(.x %>% distinct(name))$i_legend_title,
        " anom."),
      breaks = c(-Inf, seq(-4,4,1), Inf),
      n_labels = 2
    )
  )
[[1]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 5,
       height = 3,
       filename = "../output/map_absolute_ensemble_mean_pco2_products.jpg")




rm(pco2_product_map_annual_anomaly_ensemble_uncertainty)
pco2_product_map_annual_anomaly_ensemble_offset <-
left_join(
    pco2_product_map_annual_anomaly_ensemble,
    pco2_product_map_annual_anomaly %>% 
      filter(year == 2023,
             product %in% pco2_product_list)
  ) %>%
  mutate(`Anomaly offset` = resid - resid_mean) %>% 
  select(name, lon, lat, product, `Anomaly offset`)

pco2_product_map_annual_anomaly_ensemble_baseline <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    fit_mean = mean(fit),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)

pco2_product_map_annual_anomaly_ensemble_baseline <-
left_join(
    pco2_product_map_annual_anomaly_ensemble_baseline,
    pco2_product_map_annual_anomaly %>% 
      filter(year == 2023,
             product %in% pco2_product_list)
  ) %>%
  mutate(`Baseline offset` = fit - fit_mean) %>% 
  select(name, lon, lat, product, `Baseline offset`)

full_join(
  pco2_product_map_annual_anomaly_ensemble_offset,
  pco2_product_map_annual_anomaly_ensemble_baseline
) %>%
  pivot_longer(contains("offset"),
               names_to = "offset") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title =  paste(2023, "offset from ensemble mean")) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
        oob = squish
      ) +
      facet_grid(product ~ offset) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

rm(pco2_product_map_annual_anomaly_ensemble_offset,
   pco2_product_map_annual_anomaly_ensemble_baseline)

gc()
pco2_product_map_annual_anomaly_ensemble_gobm <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% gobm_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_range = max(resid) - min(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(gobm_product_list)) %>% 
  select(-n)


plot_list <- 
pco2_product_map_annual_anomaly_ensemble_gobm %>%
  filter(name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 2,
                         byrow = FALSE),
       width = 10,
       height = 16,
       filename = "../output/map_anomaly_ensemble_mean_gobm.jpg")

rm(plot_list,
   pco2_product_map_annual_anomaly_ensemble_gobm)

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3170463  169.4    6638224  354.6   6638224  354.6
Vcells 271304220 2069.9  512204434 3907.9 512122061 3907.2

Bivariate anomaly

bivariate_map <-
  pco2_product_map_annual_anomaly %>%
  filter(year == 2023, name %in% c("fgco2", "temperature")) %>%
  select(product, name, lon, lat, resid) %>%
  pivot_wider(names_from = name, values_from = resid) %>%
  drop_na()

dim_set <- 3


bivariate_map <-
  bivariate_map %>%
  mutate(
    temperature = cut(
      temperature,
      breaks = c(
        min(bivariate_map$temperature),
        0,
        0.3,
        max(bivariate_map$temperature)
      ),
      include.lowest = TRUE
    ),
    fgco2 = cut(
      fgco2,
      breaks = c(
        min(bivariate_map$fgco2),
        0,
        0.1,
        max(bivariate_map$fgco2)
      ),
      include.lowest = TRUE
    )
  )


bivariate_map <-
  bi_class(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile"
  )

bi_breaks <-
  bi_class_breaks(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile",
    dig_lab = 1,
    split = TRUE
  )

bivariate_map_raster <-
bivariate_map %>%
    relocate(lon, lat) %>%
    select(lon, lat, product, bi_class) %>%
    mutate(bi_class_numeric = as.character(as.numeric(as.factor(bi_class))))


bivariate_map_raster_values <- 
bivariate_map_raster %>% 
  distinct(bi_class, bi_class_numeric)

bivariate_map_raster <- rast(
  bivariate_map_raster %>%
    select(-bi_class) %>% 
    pivot_wider(names_from = product,
                values_from = bi_class_numeric),
    crs = "+proj=longlat"
)


bivariate_map_raster <- project(bivariate_map_raster, target_crs, method = "near")

bivariate_map_tibble <- bivariate_map_raster %>%
  as.data.frame(xy = TRUE, na.rm = FALSE) %>%
  as_tibble() %>%
  rename(lon = x, lat = y) %>%
  pivot_longer(-c(lon, lat),
               names_to = "product",
               values_to = "bi_class_numeric") %>% 
  drop_na()

bivariate_map_tibble <-
  right_join(
    bivariate_map_tibble,
    bivariate_map_raster_values %>%
      mutate(bi_class_numeric = as.numeric(bi_class_numeric))
  )


ggplot() +
  geom_raster(data = bivariate_map_tibble,
            aes(x = lon, y = lat, fill = bi_class)) +
  bi_scale_fill(pal = "DkBlue2", dim = dim_set, flip_axes = TRUE) +
  geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
  geom_sf(data = coastline_trans, linewidth = 0.3) +
  geom_sf(data = bbox_graticules_trans, linewidth = 0.5) +
  coord_sf(
    crs = target_crs,
    ylim = lat_lim,
    xlim = lon_lim,
    expand = FALSE
  ) +
  theme(
    axis.title = element_blank(),
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    panel.border = element_rect(colour = "transparent"),
    strip.background = element_blank(),
    legend.position = "none"
  ) +
  facet_wrap( ~ product, ncol = 2)

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(
  width = 6,
  height = 5,
  dpi = 600,
  filename = "../output/map_anomaly_bivariate_all_products.jpg"
)


bi_breaks$bi_x <- bi_breaks$bi_x[-1]
bi_breaks$bi_x[1] <- paste0("-", bi_breaks$bi_x[1])

bi_breaks$bi_y <- bi_breaks$bi_y[-1]
bi_breaks$bi_y[1] <- paste0("-", bi_breaks$bi_y[1])


bi_legend(
  pal = "DkBlue2",
  xlab = labels_breaks("temperature")$i_legend_title,
  ylab = labels_breaks("fgco2")$i_legend_title,
  dim = dim_set,
  pad_width = 2,
  breaks = bi_breaks,
  arrows = FALSE,
  flip_axes = TRUE
) +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    axis.ticks = element_blank(),
    axis.text = element_text(size = 10)
  )

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(
  width = 4,
  height = 3,
  dpi = 600,
  filename = "../output/map_anomaly_bivariate_all_products_legend.jpg"
)
bivariate_map <- 
pco2_product_map_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2", "temperature")) %>%
  select(name, lon, lat, resid_mean) %>% 
  pivot_wider(names_from = name,
              values_from = resid_mean) %>% 
  drop_na()


dim_set <- 3

bivariate_map <-
  bivariate_map %>%
  mutate(
    temperature = cut(
      temperature,
      breaks = c(
        min(bivariate_map$temperature),
        0,
        0.3,
        max(bivariate_map$temperature)
      ),
      include.lowest = TRUE
    ),
    fgco2 = cut(
      fgco2,
      breaks = c(
        max(bivariate_map$fgco2),
        0.1,
        0,
        min(bivariate_map$fgco2)
      ),
      include.lowest = TRUE
    )
  )

bivariate_map <-
  bi_class(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile"
  )

bi_breaks <-
  bi_class_breaks(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile",
    dig_lab = 1,
    split = TRUE
  )

bivariate_map_raster <-
bivariate_map %>%
    relocate(lon, lat) %>%
    select(lon, lat, bi_class) %>%
    mutate(bi_class_numeric = as.character(as.numeric(as.factor(bi_class))))


bivariate_map_raster_values <- 
bivariate_map_raster %>% 
  distinct(bi_class, bi_class_numeric)

bivariate_map_raster <- rast(
  bivariate_map_raster %>%
    select(-bi_class),
    crs = "+proj=longlat"
)


bivariate_map_raster <- project(bivariate_map_raster, target_crs, method = "near")

bivariate_map_tibble <- bivariate_map_raster %>%
  as.data.frame(xy = TRUE, na.rm = FALSE) %>%
  as_tibble() %>%
  rename(lon = x, lat = y) %>%
  drop_na()

bivariate_map_tibble <-
  right_join(
    bivariate_map_tibble,
    bivariate_map_raster_values %>%
      mutate(bi_class_numeric = as.numeric(bi_class_numeric))
  )


ggplot() +
  geom_raster(data = bivariate_map_tibble,
            aes(x = lon, y = lat, fill = bi_class)) +
  bi_scale_fill(pal = "DkBlue2", dim = dim_set, flip_axes = TRUE) +
  geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
  geom_sf(data = coastline_trans, linewidth = 0.3) +
  geom_sf(data = bbox_graticules_trans, linewidth = 0.5) +
  coord_sf(
    crs = target_crs,
    ylim = lat_lim,
    xlim = lon_lim,
    expand = FALSE
  ) +
  theme(
    axis.title = element_blank(),
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    panel.border = element_rect(colour = "transparent"),
    strip.background = element_blank(),
    legend.position = "none"
  )

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 5,
       height = 2.5,
       dpi = 600,
       filename = "../output/map_anomaly_bivariate_ensemble_mean_pco2_products.jpg")

bi_breaks$bi_x <- bi_breaks$bi_x[-1]
bi_breaks$bi_x[1] <- paste0("-", bi_breaks$bi_x[1])

bi_breaks$bi_y <- bi_breaks$bi_y[-1]
bi_breaks$bi_y[1] <- paste0("-", bi_breaks$bi_y[1])


bi_legend(
  pal = "DkBlue2",
  xlab = labels_breaks("temperature")$i_legend_title,
  ylab = labels_breaks("fgco2")$i_legend_title,
  dim = dim_set,
  pad_width = 2,
  breaks = bi_breaks,
  arrows = FALSE,
  flip_axes = TRUE
) +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    axis.ticks = element_blank(),
    axis.text = element_text(size = 10)
  )

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 4,
       height = 3,
       dpi = 600,
       filename = "../output/map_anomaly_bivariate_ensemble_mean_pco2_products_legend.jpg")
pco2_product_zonal_annual_anomaly <-
pco2_product_hovmoeller_monthly_anomaly %>%
  filter(year == 2023) %>%
  group_by(product, name, lat) %>%
  summarise(resid = mean(resid)) %>%
  ungroup() 


pco2_product_zonal_annual_anomaly %>%
  ggplot(aes(resid, lat, col = product)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_path() +
  scale_color_manual(values = color_products) +
  facet_wrap( ~ name, scales = "free_x", ncol = 4)

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_zonal_annual_anomaly_ensemble <- 
pco2_product_zonal_annual_anomaly %>%
  filter(product %in% pco2_product_list) %>% 
  group_by(lat, name) %>% 
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid)
  )

pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2_hov", "temperature")) %>%
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  # geom_ribbon(aes(xmin = resid_mean - resid_sd, xmax = resid_mean + resid_sd),
  #             alpha = 0.5) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.5) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.5) +
  scale_fill_manual(values = c(cold_color, warm_color)) +
  geom_path() +
  facet_grid(. ~ name,
             labeller = labeller(name = x_axis_labels),
             scales = "free_x",
             switch = "x") +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank(),
    legend.position = "none"
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
bi_pal("DkBlue2", preview = FALSE)
      1-1       2-1       3-1       1-2       2-2       3-2       1-3       2-3 
"#d3d3d3" "#97c5c5" "#52b6b6" "#c098b9" "#898ead" "#4a839f" "#ad5b9c" "#7c5592" 
      3-3 
"#434e87" 
# "#d3d3d3" "#97c5c5" "#52b6b6" "#c098b9" "#898ead" "#4a839f" "#ad5b9c" "#7c5592" "#434e87"

p_zonal_fgco2 <- 
pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2_hov")) %>%
  mutate(resid_mean = resid_mean * 1000) %>% 
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.9) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.9) +
  scale_fill_manual(values = c("#d3d3d3", "#52b6b6")) +
  geom_path() +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  scale_x_continuous(breaks = seq(-5,5,5),
                     name = str_replace(
                       labels_breaks("fgco2_hov")$i_legend_title,
                     "PgC", "TgC"
                     )) +
  theme_classic() +
  theme(
    legend.position = "none",
    axis.title.x = element_markdown(),
    axis.text.y = element_blank(),
    axis.ticks.y = element_blank(),
    axis.title.y = element_blank(),
    axis.line.y = element_blank()
  )


p_zonal_temperature <- 
pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("temperature")) %>%
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.9) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.9) +
  scale_fill_manual(values = c("#d3d3d3", "#ad5b9c")) +
  geom_path() +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  scale_x_continuous(breaks = seq(-0.6,0.6,0.3),
                     name = labels_breaks("temperature")$i_legend_title) +
  theme_classic() +
  theme(
    legend.position = "none",
    axis.title.x = element_markdown(),
    axis.title.y = element_text(angle = 0)
  )

p_zonal_temperature | p_zonal_fgco2

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 2.8,
       height = 4.5,
       filename = "../output/zonal_mean_anomaly_pco2_product_ensemble_mean.jpg")

SST flux slope

pco2_product_map_annual_anomaly_temperature_predict <-
  pco2_product_map_annual_anomaly_temperature_predict %>%
  drop_na()
  
  
pco2_product_map_annual_anomaly_temperature_predict %>%
  p_map_mdim_robinson(
    var = "slope",
    legend_title = "Slope FCO<sub>2</sub> anom. / SST anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup> °C<sup>-1</sup>)",
    breaks = c(-Inf, seq(-1, 1, 0.25), Inf),
    dim_wrap = "product",
    n_col = 2
  )

Version Author Date
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 7,
       height = 6,
       dpi = 600,
       filename = "../output/map_anomaly_correlation_all_products.jpg")


pco2_product_map_annual_anomaly_temperature_predict <-
  pco2_product_map_annual_anomaly_temperature_predict %>%
  select(-year) %>%
  pivot_longer(-c(product, lon, lat), values_to = "resid")


pco2_product_map_annual_anomaly_temperature_predict %>%
  filter(str_detect(name, "fgco2")) %>%
  p_map_mdim_robinson(
    var = "resid",
    legend_title = labels_breaks("fgco2")$i_legend_title,
    breaks = labels_breaks("fgco2")$i_breaks,
    dim_row = "product",
    dim_col = "name"
  )

Version Author Date
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_map_annual_anomaly_temperature_predict_ensemble <-
  pco2_product_map_annual_anomaly_temperature_predict %>%
  filter(product %in% pco2_product_list) %>%
  fgroup_by(name, lon, lat) %>%
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid),
    n = fnobs(resid)
  ) %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)


pco2_product_map_annual_anomaly_temperature_predict_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_anomaly_temperature_predict_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(
    resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
    resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)
  ) %>% 
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_map_annual_anomaly_temperature_predict_ensemble_uncertainty <-
  pco2_product_map_annual_anomaly_temperature_predict_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_anomaly_temperature_predict_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_temperature_predict_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )
[[1]]

Version Author Date
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
plot_list <- pco2_product_map_annual_anomaly_temperature_predict_ensemble %>%
  mutate(product = "Ensemble mean") %>%
  group_split(name) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_temperature_predict_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      legend_position = "bottom",
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )

ggsave(plot = wrap_plots(plot_list,
                         ncol = 2),
       width = 12,
       height = 6,
       filename = "../output/map_annual_anomaly_temperature_predict_ensemble.jpg")

rm(
  pco2_product_map_annual_anomaly_temperature_predict_ensemble,
  pco2_product_map_annual_anomaly_temperature_predict_ensemble_coarse,
  pco2_product_map_annual_anomaly_temperature_predict_ensemble_uncertainty
)

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3308774  176.8    6638224  354.6   6638224  354.6
Vcells 289269199 2207.0  512204434 3907.9 512164846 3907.6

Monthly means

2023 anomaly

pco2_product_map_monthly_anomaly <-
  inner_join(
    biome_mask_print,
    pco2_product_map_monthly_anomaly
  )
pco2_product_map_monthly_anomaly %>%
  filter(name %in% name_core,
         year == 2023) %>%
  group_split(name) %>%
  head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      facet_grid(month ~ product) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )
pco2_product_map_monthly_anomaly_ensemble <-
  pco2_product_map_monthly_anomaly %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  fgroup_by(name, lon, lat, month) %>%
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid),
    n = fnobs(resid)
  ) %>%
  filter(n == length(pco2_product_list)) %>%
  select(-n)

pco2_product_map_monthly_anomaly_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_monthly_anomaly_ensemble) %>%
  fgroup_by(name, month, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_map_monthly_anomaly_ensemble <-
  left_join(
    pco2_product_map_monthly_anomaly_ensemble,
    pco2_product_map_monthly_anomaly_ensemble_coarse
  )


pco2_product_map_monthly_anomaly_ensemble %>%
  filter(name %in% name_core) %>%
  mutate(month = as.character(month),
         month = fct_inorder(month)) %>% 
  group_split(name) %>%
  head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid_mean",
      dim_wrap = "month",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )
[[1]]

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
rm(
  pco2_product_map_monthly_anomaly_ensemble,
  pco2_product_map_monthly_anomaly_ensemble_coarse
)

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3256386  174.0    6638224  354.6   6638224  354.6
Vcells 258840626 1974.8  512204434 3907.9 512164846 3907.6

fCO2 decomposition

pco2_product_map_monthly_fCO2_decomposition <-
  inner_join(pco2_product_map_monthly_fCO2_decomposition,
             biome_mask_print)
pco2_product_map_monthly_fCO2_decomposition %>%
  filter(year == 2023) %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = .x$product) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("sfco2"),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

pco2_product_map_monthly_fCO2_decomposition %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat, month) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      # geom_point(
      #   data = .x %>% filter(abs(resid_mean) < resid_sd),
      #   aes(lon, lat, shape = "Ensemble mean\n< StDev"),
      #   col = "grey"
      # ) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("sfco2"),,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      scale_shape_manual(values = 46, name = "") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )
pco2_product_map_annual_fCO2_decomposition <-
  pco2_product_map_monthly_fCO2_decomposition %>% 
  select(product, year, lat, lon, name, resid) %>% 
  fgroup_by(product, year, lat, lon, name) %>% 
  fmean()

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3229009  172.5    6638224  354.6   6638224  354.6
Vcells 232614757 1774.8  512204434 3907.9 512164846 3907.6
pco2_product_map_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  select(-year) %>% 
  relocate(lon, lat) %>% 
  # mutate(name = str_remove(name, "sfco2_")) %>%
  p_map_mdim_robinson(
    var = "resid",
    dim_col = "name",
    dim_row = "product",
    legend_title = labels_breaks("sfco2")$i_legend_title,
    breaks = 2 * (labels_breaks("sfco2")$i_breaks),
    n_labels = 2
  )

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_map_annual_fCO2_decomposition_ensemble <-
  pco2_product_map_annual_fCO2_decomposition %>%
  filter(product %in% pco2_product_list, year == 2023) %>%
  group_by(name, lon, lat) %>%
  summarize(resid_sd = sd(resid),
            resid_mean = mean(resid),
            n = n()) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>%
  select(-n)


pco2_product_map_annual_fCO2_decomposition_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_fCO2_decomposition_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)



pco2_product_map_annual_fCO2_decomposition_ensemble_uncertainty <-
  pco2_product_map_annual_fCO2_decomposition_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_fCO2_decomposition_ensemble %>%
  select(lon, lat, name, resid_mean) %>% 
  mutate(name = fct_relevel(name,
                            c("sfco2_therm", "sfco2_nontherm"))) %>% 
  p_map_mdim_robinson(
    df_uncertainty = pco2_product_map_annual_fCO2_decomposition_ensemble_uncertainty,
    var = "resid_mean",
    legend_title = labels_breaks("sfco2")$i_legend_title,
    breaks = 2*(labels_breaks("sfco2")$i_breaks),
    dim_wrap = "name",
    n_col = 1,
    n_labels = 2
  )

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 5,
       height = 7,
       dpi = 600,
       filename = "../output/map_anomaly_fco2_decomposition_ensemble_mean_pco2_products.jpg")

Flux attribution

pco2_product_map_monthly_flux_attribution <-
  inner_join(pco2_product_map_monthly_flux_attribution, biome_mask_print)
# pco2_product_map_monthly_flux_attribution <-
#   flux_attribution(pco2_product_map_monthly_anomaly,
#                    year, month, lon, lat)

pco2_product_map_monthly_flux_attribution %>%
  filter(year == 2023) %>% 
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(subtitle = .x$product) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown(), 
            legend.position = "bottom") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top",
            strip.text.x.top = element_markdown())
  )



pco2_product_map_monthly_flux_attribution %>%
  filter(year == 2023) %>% 
  drop_na() %>% 
  filter(product %in% pco2_product_list) %>%
  group_by(name, lon, lat, month) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      # geom_point(data = .x %>% filter(abs(resid_mean) < resid_sd),
      #            aes(lon, lat, shape = "Ensemble mean\n< StDev"))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      )+
      scale_shape_manual(values = 46, name = "") +
      theme(legend.title = element_markdown(),
            legend.position = "bottom") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.title = element_markdown(),
        legend.position = "top",
        strip.text.x.top = element_markdown()
      )
  )
pco2_product_map_annual_flux_attribution <-
  pco2_product_map_monthly_flux_attribution %>% 
  group_by(product, year, lat, lon, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup()

pco2_product_map_annual_flux_attribution %>%
  filter(year == 2023) %>%
  select(-year) %>% 
  relocate(lon, lat) %>% 
  # mutate(name = str_remove_all(name, "_")) %>%
  p_map_mdim_robinson(
    var = "resid",
    dim_row = "product",
    dim_col = "name",
    legend_title = labels_breaks("fgco2")$i_legend_title,
    breaks = labels_breaks("fgco2")$i_breaks,
    n_labels = 2
  )

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_map_annual_flux_attribution_ensemble <-
pco2_product_map_annual_flux_attribution %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  drop_na()

pco2_product_map_annual_flux_attribution_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_flux_attribution_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)



pco2_product_map_annual_flux_attribution_ensemble_uncertainty <-
  pco2_product_map_annual_flux_attribution_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_flux_attribution_ensemble %>%
  select(lon, lat, name, resid_mean) %>% 
  p_map_mdim_robinson(
    df_uncertainty = pco2_product_map_annual_flux_attribution_ensemble_uncertainty,
    var = "resid_mean",
    legend_title = labels_breaks("fgco2")$i_legend_title,
    breaks = labels_breaks("fgco2")$i_breaks,
    dim_wrap = "name",
    n_col = 1,
    n_labels = 2
  )

Version Author Date
fb85a52 jens-daniel-mueller 2025-03-10
ae5b6a4 jens-daniel-mueller 2025-03-10
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 5,
       height = 7,
       dpi = 600,
       filename = "../output/map_anomaly_flux_attribution_ensemble_mean_pco2_products.jpg")

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Hovmoeller plots are presented as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Monthly means

Anomalies

pco2_product_hovmoeller_monthly_anomaly %>%
  filter(name %in% name_core) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid,.01),quantile(.x$resid,.99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap(~ product, ncol = 1)
  )
pco2_product_hovmoeller_monthly_anomaly_ensemble <-
  pco2_product_hovmoeller_monthly_anomaly %>% 
  group_by(name, decimal, lat) %>%
  summarize(
    resid_range = max(resid) - min(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n > 1)
  

pco2_product_hovmoeller_monthly_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid_mean)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap( ~ product, ncol = 1)
  )
left_join(
    pco2_product_hovmoeller_monthly_anomaly_ensemble,
    pco2_product_hovmoeller_monthly_anomaly
  ) %>%
  mutate(resid_offset = resid - resid_mean) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid_offset)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0)+
      labs(title = "Monthly offset from ensemble mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap( ~ product, ncol = 1)
  )

Regional means and integrals

The following plots show biome-, super biome- or global- averaged/integrated values of each variable as provided through the fCO2 product, represented here as the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Anomalies are presented relative to the predicted annual mean of each year, hence preserving the seasonality.

Annual anomalies

pco2_product_biome_annual_anomaly_ensemble <-
  pco2_product_biome_annual_anomaly %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome) %>%
  summarise(resid_sd = sd(resid),
            resid = mean(resid),
            value = mean(value),
            fit = mean(fit)) %>%
  ungroup()


lm_fgco2_sst <- pco2_product_biome_annual_anomaly %>%
  filter(
    name %in% c("fgco2_int", "temperature"),
    biome == "Global non-polar",
    year != 2023,
    product %in% pco2_product_list
  ) %>%
  select(year, product, name, resid) %>%
  pivot_wider(values_from = resid) %>%
  nest(data = -product) %>%
  mutate(fit = map(data, ~ flm(
    formula = fgco2_int ~ temperature, data = .x
  )))

lm_fgco2_sst <-
  left_join(
    lm_fgco2_sst %>%
      unnest_wider(fit) %>%
      select(product, intercept = `(Intercept)`, slope = temperature) %>%
      mutate(intercept = as.vector(intercept), slope = as.vector(slope)),
    pco2_product_biome_annual_anomaly %>%
      filter(
        name %in% c("temperature"),
        biome == "Global non-polar",
        # year == 2023,
        product %in% pco2_product_list
      ) %>%
      select(product, year, name, resid) %>%
      pivot_wider(values_from = resid)
  ) %>%
  mutate(resid = intercept + temperature * slope)


lm_fgco2_sst
# A tibble: 136 × 6
   product intercept  slope  year temperature   resid
   <fct>       <dbl>  <dbl> <dbl>       <dbl>   <dbl>
 1 CMEMS   -7.31e-15 -0.548  1990      0.135  -0.0738
 2 CMEMS   -7.31e-15 -0.548  1991     -0.0289  0.0158
 3 CMEMS   -7.31e-15 -0.548  1992     -0.0660  0.0362
 4 CMEMS   -7.31e-15 -0.548  1993     -0.0502  0.0275
 5 CMEMS   -7.31e-15 -0.548  1994     -0.0431  0.0237
 6 CMEMS   -7.31e-15 -0.548  1995      0.0219 -0.0120
 7 CMEMS   -7.31e-15 -0.548  1996     -0.0712  0.0391
 8 CMEMS   -7.31e-15 -0.548  1997      0.0987 -0.0541
 9 CMEMS   -7.31e-15 -0.548  1998      0.153  -0.0837
10 CMEMS   -7.31e-15 -0.548  1999     -0.0839  0.0460
# ℹ 126 more rows
lm_fgco2_sst %>%
  filter(year == 2023) %>% 
  mutate(across(c(slope, temperature, resid), ~ round(.x, 2)),
         across(c(intercept), ~ signif(.x, 2))) %>%
  write_csv("../output/lm_fgco2_sst.csv")
  
  
  lm_fgco2_sst <-
    lm_fgco2_sst %>%
    group_by(year) %>%
    summarise(
      resid_sd = sd(resid),
      resid_mean = mean(resid),
      temperature_sd = sd(temperature),
      temperature_mean = mean(temperature)
    ) %>%
    ungroup()
  

pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst <-
  inner_join(
    lm_fgco2_sst,
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name %in% c("fgco2_int"), biome == "Global non-polar") %>%
      select(year, name, fit)
  ) %>%
  mutate(fgco2_predict = resid_mean + fit) %>%
  select(-fit)

nino_sst %>% 
  filter(year >= 1990) %>% 
  ggplot(aes(year + month/12, resid)) +
  geom_hline(yintercept = 0.5) +
  geom_path() +
  geom_path(data = . %>% 
              group_by(year) %>% 
              mutate(resid = mean(resid)) %>% 
              ungroup())

bind_rows(
  pco2_product_biome_annual_anomaly_ensemble,
  pco2_product_biome_annual_anomaly_ensemble %>%
    filter(year == max(year)) %>%
    mutate(year = year + 1) %>%
    select(-c(resid, resid_sd))
) %>%
  filter(name %in% c("fgco2_int", "temperature"), biome == "Global non-polar") %>%
  mutate(name = fct_rev(as.factor(name))) %>%
  ggplot() +
  geom_path(
    data = pco2_product_biome_monthly_anomaly %>%
      filter(
        product %in% pco2_product_list,
        name %in% c("fgco2_int", "temperature"),
        biome == "Global non-polar"
      ) %>%
      group_by(year, month, name, biome) %>%
      summarise(value = mean(value)) %>%
      ungroup(),
    aes(year + month / 12, value),
    col = "grey90"
  ) +
  geom_rect(
    data = pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst %>%
      filter(year %in% 2023),
    aes(xmin = year, xmax = year + 1, ymin = fgco2_predict - resid_sd,
        ymax = fgco2_predict + resid_sd),
    fill = trend_color, col = trend_color
  ) +
  geom_text(
    data = pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst %>%
      filter(year %in% c(2023)),
    aes(x = year + 1, y = fgco2_predict - 0.2, label = "Expected 2023 anomaly"),
    hjust = 1,
    fontface = "bold",
    col = trend_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "temperature"),
    aes(x = year, y = 21.95, label = "Warm"),
    hjust = 0,
    fontface = "bold",
    col = warm_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "temperature"),
    aes(x = year, y = 21.45, label = "Cold"),
    hjust = 0,
    fontface = "bold",
    col = cold_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "fgco2_int"),
    aes(x = year, y = -0.85, label = "Weak carbon sink"),
    hjust = 0,
    fontface = "bold",
    col = warm_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "fgco2_int"),
    aes(x = year, y = -2.1, label = "Strong carbon sink"),
    hjust = 0,
    fontface = "bold",
    col = cold_color
  ) +
  geom_text(
    data = . %>%
      filter(year %in% c(1997, 2015, 2023), name == "fgco2_int"),
    aes(
      x = year + 0.5,
      y = -2.6,
      label = "EN"
    ), size = 3, fontface = "italic", col = "grey20") +
  geom_text(
    data = . %>%
      filter(year %in% c(1997, 2015, 2023), name == "temperature"),
    aes(
      x = year + 0.5,
      y = 21.45,
      label = "EN"
    ), size = 3, fontface = "italic", col = "grey20") +
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.7
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  geom_step(aes(year, value, col = "Observed")) +
  geom_linerange(aes(
    x = year + 0.5,
    ymin = value - resid_sd,
    ymax = value + resid_sd,
    linetype = "Product SD"
  )) +
  scale_color_manual(values = c("grey40", "grey10"), name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  scale_linetype(name = "Anomaly uncertainty") +
  guides(
    color = guide_legend(order = 1),
    fill = guide_legend(order = 2),
    linetype = guide_legend(order = 3)
  ) +
  scale_x_continuous(limits = c(1989.5, 2024.8), expand = c(0, 0)) +
  facet_wrap(
    . ~ name,
    scales = "free_y",
    strip.position = "left",
    labeller = labeller(name = x_axis_labels_abs)
    # switch = "y"
  )+
  labs(x = "Year") +
  theme(
    axis.title.y = element_blank(),
    axis.title.x = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "none",
    legend.direction = "vertical"
  )

ggsave(width = 10,
       height = 2,
       dpi = 600,
       filename = "../output/timeseries_ensemble_mean_pco2_products.jpg")

bind_rows(
  pco2_product_biome_annual_anomaly,
  pco2_product_biome_annual_anomaly %>%
    filter(year == max(year)) %>%
    mutate(year = year + 1) %>% 
    select(-c(resid))
) %>% 
  filter(name %in% c("fgco2_int", "temperature"),
         biome == "Global non-polar") %>%
  ggplot() +
  geom_path(
    data = pco2_product_biome_monthly_anomaly %>%
      filter(name %in% c("fgco2_int", "temperature"),
             biome == "Global non-polar"),
    aes(year + month / 12, value),
    col = "grey90"
  )+
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.5
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  geom_step(aes(year, value, col = "Observed")) +
  scale_color_manual(values = c("grey40", "grey10"),
                     name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  guides(
    color = guide_legend(order = 1),
    fill = guide_legend(order = 2)
  ) +
  scale_x_continuous(limits = c(1989.5,2024.5), expand = c(0,0),
                     breaks = c(1990,2010)) +
  facet_grid(
    name ~ product,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    axis.title = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "none",
    legend.direction = "vertical"
  )

ggsave(width = 8,
       height = 3,
       dpi = 600,
       filename = "../output/timeseries_all_products.jpg")


bind_rows(
  pco2_product_biome_monthly_anomaly,
  pco2_product_biome_monthly_anomaly %>%
    filter(year == max(year),
           month == 12) %>%
    mutate(month = month + 1)
) %>%
  mutate(year = year + month/12) %>% 
  filter(name %in% c("fgco2_int", "temperature"),
         product == if(GCB_products){"OceanSODA"}else{"OceanSODAv2"},
         biome == "Global non-polar",
         year >= 2010) %>%
  ggplot() +
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1/12,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.5
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  scale_color_manual(values = c("grey40", "grey10"),
                     name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  guides(color = guide_legend(order = 1),
         fill = guide_legend(order = 2))+
  facet_grid(
    name ~ .,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  coord_cartesian(expand = 0) +
  theme(
    axis.title = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "top",
    legend.direction = "vertical"
  )

df_baseline <-
  pco2_product_biome_annual_anomaly_ensemble %>%
  filter(biome == "Global non-polar",
         name %in% c("fgco2_int", "temperature")) %>%
  select(year, name, value) %>%
  pivot_wider() %>% 
  rename(fgco2_int_observed = fgco2_int)


df_baseline <-
  inner_join(df_baseline, co2_annmean_gl %>% select(year, atmco2 = mean))

df_baseline <-
  inner_join(df_baseline, co2_gr_gl %>% select(year, atmco2_gr = `ann inc`))

df_baseline <-
  inner_join(df_baseline, nino_sst %>% 
               group_by(year) %>% 
               summarise(nino34 = mean(resid)) %>% 
               ungroup())

df_baseline <-
  inner_join(df_baseline, pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst %>% 
               select(year, fgco2_int_predict_baseline_global_SST = fgco2_predict))

df_baseline %>% 
  pivot_longer(-year) %>% 
  ggplot(aes(year, value)) +
  geom_path() +
  facet_grid(name ~ ., scales = "free_y")

Version Author Date
60900ed jens-daniel-mueller 2025-03-07
df_baseline %>% 
  select(-fgco2_int_predict_baseline_global_SST) %>% 
  pivot_longer(-c(year, fgco2_int_observed)) %>% 
  ggplot(aes(value, fgco2_int_observed)) +
  geom_path(col = "grey80") +
  geom_point(aes(fill = year),
             shape = 21) +
  scale_fill_viridis_c() +
  facet_wrap(~ name, scales = "free_x")

Version Author Date
60900ed jens-daniel-mueller 2025-03-07
mlr <- lm(data = df_baseline, fgco2_int_observed ~ atmco2 + atmco2_gr + nino34)

df_baseline %>% 
  mutate(fgco2_int_predict_atm_nino = predict.lm(mlr, .)) %>% 
  pivot_longer(starts_with("fgco2_int"),
               names_prefix = "fgco2_int_") %>% 
  ggplot(aes(year, value, col = name)) +
  geom_path() +
  geom_smooth(data = . %>% filter(name == "observed",
                                  year != 2023),
              method = "lm",
              se = FALSE,
              fullrange = TRUE) +
  scale_color_okabeito() +
  labs(y = str_remove(labels_breaks("fgco2_int")$i_legend_title, "anom.")) +
  theme(axis.title.x = element_blank(),
        axis.title.y = element_markdown(),
        legend.title = element_blank())

Version Author Date
60900ed jens-daniel-mueller 2025-03-07
ggsave(width = 8,
       height = 4,
       dpi = 600,
       filename = "../output/timeseries_ensemble_mean_pco2_products_predictions.jpg")
pco2_product_biome_annual_anomaly %>%
  filter(year == 2023,
         name %in% c("fgco2", "fgco2_int", "dfco2",
                     "kw_sol", "temperature",
                     "no3", "mld", "intpp", "chl")) %>%
  mutate(region = case_when(biome == "Global non-polar" ~ "Global non-polar",
                            # biome %in% super_biomes ~ "Super biomes",
                            TRUE ~ "Biomes"),
         region = factor(region, levels = c("Global non-polar", "Biomes"))) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes(biome, value, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(biome, fit, group = product, col = paste0(2023,"\nlinear\nprediction")),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title,
           title = "Absolute") +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
            axis.title.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[5]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[6]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[7]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[8]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
full_join(
  pco2_product_biome_annual_anomaly %>%
    filter(year != 2023,
           name %in% name_core) %>%
    group_by(product, name, biome) %>% 
    summarise(resid_sd = sd(resid)) %>% 
    ungroup(),
  pco2_product_biome_annual_anomaly %>%
    filter(year == 2023,
           name %in% name_core)) %>%
  mutate(
    region = case_when(
      biome == "Global non-polar" ~ "Global non-polar",
      TRUE ~ "Biomes"
    ),
    region = factor(region, levels = c("Global non-polar", "Biomes"))
  ) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes(biome, value - fit, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(biome, resid_sd * sign(value - fit), 
                   group = product, col = paste0("Anomaly SD\nexcl.",2023)),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title,
           title = "Anomalies") +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
            axis.title.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[5]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[6]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[7]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[8]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[9]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

Super regions

pco2_product_biome_annual_anomaly_super_regions <-
  full_join(
    pco2_product_biome_annual_anomaly %>% 
      filter(biome != "Global non-polar"),
    biome_mask %>%
      mutate(area = earth_surf(lat, lon)) %>%
      group_by(biome) %>%
      summarise(area = sum(area)) %>%
      ungroup()
  ) %>% 
  pivot_longer(c(value,resid,fit),
               names_to = "estimate") %>% 
  pivot_wider()

pco2_product_biome_annual_anomaly_super_regions <-
bind_rows(
  pco2_product_biome_annual_anomaly_super_regions %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Global"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(!str_detect(biome, "SO-ICE|SO-SPSS|Arctic")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Global non-polar"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(!str_detect(biome, "SO-ICE|Arctic")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Global ice-free"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "NA-|NP-")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "NH extratropics"),
  # pco2_product_biome_annual_anomaly_super_regions %>%
  #   filter(str_detect(biome, "NA-")) %>%
  #   select(-biome) %>% 
  #   group_by(product, estimate, year) %>%
  #   summarise(across(-c(fgco2_int, area),
  #                    ~ weighted.mean(., area, na.rm = TRUE)),
  #             across(fgco2_int,
  #                    ~ sum(., na.rm = TRUE))) %>%
  #   ungroup() %>%
  #   mutate(region = "North Atlantic"),
  # pco2_product_biome_annual_anomaly_super_regions %>%
  #   filter(str_detect(biome, "NP-")) %>%
  #   select(-biome) %>% 
  #   group_by(product, estimate, year) %>%
  #   summarise(across(-c(fgco2_int, area),
  #                    ~ weighted.mean(., area, na.rm = TRUE)),
  #             across(fgco2_int,
  #                    ~ sum(., na.rm = TRUE))) %>%
  #   ungroup() %>%
  #   mutate(region = "North Pacific"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "PEQU|AEQU|Equ")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Tropics"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "SA-|SP-|Southern|SO-STSS")) %>%
    select(-biome) %>%
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int, 
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "SH extratropics")) %>%
  mutate(region = fct_inorder(region)) %>% 
  pivot_longer(-c(product, year, region, estimate)) %>% 
  pivot_wider(names_from = estimate)

pco2_product_biome_annual_anomaly_super_regions %>% 
  filter(year == 2023,
         name %in% c("fgco2", "fgco2_int", "dfco2", "temperature")) %>%    
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_hline(yintercept = 0) +
      geom_col(aes(region, value, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(region, fit, group = product, col = paste0(2023,"\nlinear\nprediction")),
               position = "dodge2",
               fill = "transparent") +
      labs(y = str_remove(labels_breaks(unique(.x$name))$i_legend_title, " anom.")) +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_blank(),
            axis.title.x = element_blank(),
            axis.ticks.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
full_join(pco2_product_biome_annual_anomaly_super_regions %>%
  group_by(product, name, region) %>%
  summarise(resid_sd = sd(resid, na.rm = TRUE)) %>%
  ungroup(),
pco2_product_biome_annual_anomaly_super_regions %>%  
  filter(year == 2023)) %>% 
  filter(name %in% c("fgco2", "fgco2_int", "dfco2", "temperature")) %>%    
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_hline(yintercept = 0) +
      geom_col(aes(region, resid, fill = product),
               position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(region, resid_sd * sign(value - fit), 
                   group = product, col = paste0("Anomaly SD\nexcl.",2023)),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title) +
      scale_color_grey() +
      facet_grid(. ~ region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_blank(),
            axis.title.x = element_blank(),
            axis.ticks.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_anomaly_super_regions <-
  bind_rows(
    pco2_product_biome_annual_anomaly_super_regions %>%
      rename(biome = region),
    pco2_product_biome_annual_anomaly %>% 
      filter(biome != "Global non-polar")
  ) %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome) %>%
  summarise(
    resid_sd = sd(resid),
    resid = mean(resid),
    value_sd = sd(value),
    value = mean(value)
  ) %>%
  ungroup()


pco2_product_biome_annual_anomaly_super_regions <-
  pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("temperature", "fgco2", "fgco2_int"))

pco2_product_biome_annual_anomaly_super_regions %>%
  filter(year == 2023) %>%
  mutate(
    resid = paste(ifelse(
      resid > 0, paste0("+", round(resid, 2)), round(resid, 2)
    ), round(resid_sd, 2), sep = "±"),
    value = paste(ifelse(
      value > 0, paste0("+", round(value, 2)), round(value, 2)
    ), round(value_sd, 2), sep = "±")
  ) %>%
  select(-c(contains("_sd"), year)) %>%
  pivot_wider(values_from = c(resid, value)) %>%
  relocate(
    biome,
    value_temperature,
    resid_temperature,
    value_fgco2_int,
    resid_fgco2_int,
    value_fgco2,
    resid_fgco2
  ) %>%
  arrange(match(
    biome,
    c(
      "NA-SPSS",
      "NA-STPS",
      "NA-STSS",
            "North Atlantic",
            "NP-SPSS",
      "NP-STPS",
      "NP-STSS",
      "North Pacific",
      "NH extratropics",
      "PEQU-E",
      "PEQU-W",
      "AEQU",
      "Equatorial Indian",
      "Tropics",
      "SA-STPS",
      "SP-STPS",
      "Southern Indian",
      "SO-STSS",
      "SH extratropics",
      "Global non-polar",
      "SO-SPSS",
      "SO-ICE",
      "Arctic",
      "Global"
    )
  )) %>% 
  write_csv("../output/biome_anomaly_ensemble_mean_pco2_products.csv")
pco2_product_biome_annual_anomaly_merged <-
full_join(region_biomes,
          pco2_product_biome_annual_anomaly) %>%
  mutate(region = case_when(biome == "Global non-polar" ~ "Global\nnon-polar",
                            region == "atlantic" ~ "Atlantic",
                            region == "pacific" ~ "Pacific",
                            region == "indian" ~ "Indian Ocean",
                            TRUE ~ region),
         region = fct_rev(fct_inorder(region))) %>% 
  mutate(
    latitude = case_when(
      biome == "Global non-polar" ~ "Global\nnon-polar",
      biome %in% c(
        "NA-SPSS",
        "NA-STSS",
        "NA-STPS",
        "NP-SPSS",
        "NP-STSS",
        "NP-STPS"
      ) ~ "NH extratropics",
      biome %in% c(
        "Equatorial Indian",
        "PEQU-W",
        "PEQU-E",
        "AEQU"
      ) ~ "Tropics",
      biome %in% c("SA-STPS", "SP-STPS", "Southern Indian", "SO-STSS") ~ "SH extratropics",
      biome %in% c("SO-SPSS", "SO-ICE") ~ "SH polar",
      biome %in% c("Arctic") ~ "NH polar",
      TRUE ~ "other"
    ),
    latitude = fct_relevel(latitude, c("Global\nnon-polar",
                                       "NH polar",
                                       "NH extratropics",
                                       "Tropics",
                                       "SH extratropics",
                                       "SH polar"))) %>% 
  mutate(basin = case_when(
    biome == "Global non-polar" ~ "",
    str_detect(biome, "NA-|SA-|AEQU") ~ "Atlantic",
    str_detect(biome, "NP-|SP-") ~ "Pacific",
    str_detect(biome, "Indian") ~ "Indian",
    str_detect(biome, "SO-") ~ "Southern\nOcean",
    str_detect(biome, "Arctic") ~ "Arctic",
    biome == "PEQU-E" ~ "Pacific-E",
    biome == "PEQU-W" ~ "Pacific-W",
    TRUE ~ "other")) %>% 
  mutate(biome_class = case_when(
    str_detect(biome, "SPSS") ~ "Subpolar\nseasonally\nstratified\n(SPSS)",
    str_detect(biome, "STSS") ~ "Subtropical\nseasonally\nstratified\n(STSS)",
    str_detect(biome, "STPS|Southern Indian") ~ "Subtropical\npermanently\nstratified\n(STPS)",
    str_detect(biome, "Arctic|ICE") ~ "Ice",
    TRUE ~ ""),
    biome_class = fct_relevel(biome_class, 
                              "Subtropical\nseasonally\nstratified\n(STSS)", 
                              after = 2)) %>% 
  filter(year == 2023,
         name %in% c("temperature", "fgco2", "fgco2_int"))

pco2_product_biome_annual_anomaly_merged_ensemble <- 
pco2_product_biome_annual_anomaly_merged %>% 
  filter(product %in% pco2_product_list) %>% 
  group_by(name, biome, basin, region, latitude, biome_class) %>%
  summarise(resid_sd = sd(resid),
            resid = mean(resid))

pco2_product_biome_annual_anomaly_merged_ensemble %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
name biome basin region latitude biome_class resid_sd resid
fgco2 AEQU Atlantic Atlantic Tropics 0.0577295 -0.0906368
fgco2 Arctic Arctic arctic NH polar Ice 0.0534356 0.2606929
fgco2 Equatorial Indian Indian Indian Ocean Tropics 0.0284787 -0.0440692
fgco2 Global non-polar Global non-polar |Global non-pola
seasonally stratified (SPSS)
0.1668
permanently stratified (STP
) | 0.0238 36| 0.1629
fgco2 NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS
0.1117
seasonally stratified (SPSS)
0.3402
permanently stratified (STP
) | 0.0248 90| 0.0558
fgco2 NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS
0.0460
permanently stratified (STP
) | 0.0832 99| -0.0043
fgco2 SO-ICE Southern Ocean |southern |SH polar |Ice
0.135805
Ocean
|southern |SH polar |Subpolar seasonally stratified (SPSS)
0.278
Ocean
|southern |SH extratropics |Subtropical seasonally stratified (STS ) | 0.176 375| 0.181
fgco2 SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STP ) | 0.0406 89| 0.0041
fgco2 Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STP ) | 0.0603 36| 0.0959
fgco2_int AEQU Atlantic Atlantic Tropics 0.0057416 -0.0092380
fgco2_int Arctic Arctic arctic NH polar Ice 0.0101434 0.0276355
fgco2_int Equatorial Indian Indian Indian Ocean Tropics 0.0086669 -0.0139424
fgco2_int Global non-polar Global non-polar |Global non-pola
seasonally stratified (SPSS)
0.0181
permanently stratified (STP
) | 0.0068 03| 0.0437
fgco2_int NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS
0.0081
seasonally stratified (SPSS)
0.0568
permanently stratified (STP
) | 0.0132 08| 0.0290
fgco2_int NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS
0.0053
permanently stratified (STP
) | 0.0194 12| -0.0010
fgco2_int SO-ICE Southern Ocean |southern |SH polar |Ice
0.032644
Ocean
|southern |SH polar |Subpolar seasonally stratified (SPSS)
0.103
Ocean
|southern |SH extratropics |Subtropical seasonally stratified (STS ) | 0.061 849| 0.063
fgco2_int SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STP ) | 0.0267 95| 0.0025
fgco2_int Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STP ) | 0.0122 74| 0.0195
temperature AEQU Atlantic Atlantic Tropics 0.0781952 0.2680352
temperature Arctic Arctic arctic NH polar Ice 0.0903091 -0.0786063
temperature Equatorial Indian Indian Indian Ocean Tropics 0.0501805 0.0201683
temperature Global non-polar Global non-polar |Global non-pola
seasonally stratified (SPSS)
0.0259
permanently stratified (STP
) | 0.0481 23| 0.4978
temperature NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS
0.0292
seasonally stratified (SPSS)
0.0370
permanently stratified (STP
) | 0.0227 68| -0.0000
temperature NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS
0.0417
permanently stratified (STP
) | 0.0373 01| 0.1091
temperature SO-ICE Southern Ocean |southern |SH polar |Ice
0.033078
Ocean
|southern |SH polar |Subpolar seasonally stratified (SPSS)
0.029
Ocean
|southern |SH extratropics |Subtropical seasonally stratified (STS ) | 0.047 150| 0.247
temperature SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STP ) | 0.0319 25| 0.1094
temperature Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STP ) | 0.0929 06| 0.0884
pco2_product_biome_annual_anomaly_merged_ensemble %>%
  filter(name != "fgco2_int", !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")) %>%
  ggplot(aes(x = basin, y = resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(
    ymin = resid - resid_sd,
    ymax = resid + resid_sd,
    col = "fCO2 product\nensemble SD"
  )) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color() +
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(
        name != "fgco2_int",
        product %in% pco2_product_list,
        !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")
      ),
    aes(col = product, shape = product)
  ) +
  scale_color_manual(values = color_products, name = "fCO2 products") +
  scale_shape_manual(values = shape_products, name = "fCO2 products") +
  new_scale_color() +
  new_scale("shape") +
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(
        name != "fgco2_int",
        product %in% gobm_product_list,
        !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")
      ),
    aes(col = product, shape = product),
    position = position_nudge(x = 0.2)
  ) +
  scale_color_manual(values = color_products, name = "GOBMs") +
  scale_shape_manual(values = shape_products, name = "GOBMs") +
  facet_nested(
    name ~ latitude + biome_class,
    scales = "free",
    space = "free_x",
    labeller = labeller(name = x_axis_labels),
    switch = "y",
    nest_line = element_line(linewidth = 0.8),
    solo_line = TRUE,
    strip = strip_nested(
      text_x = list(
        element_text(face = "bold"),
        element_text(face = "bold"),
        element_text(face = "bold"),
        element_text(face = "bold"),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text()
      )
    )
  ) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank()
  )

Version Author Date
dd25c0c jens-daniel-mueller 2025-03-06
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 10,
       height = 6,
       dpi = 600,
       filename = "../output/biome_anomaly_ensemble_mean_pco2_products.jpg")


p_global <- pco2_product_biome_annual_anomaly_merged_ensemble %>% 
  filter(biome == "Global non-polar") %>% 
  ggplot(aes(basin, resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(ymin = resid - resid_sd,
                     ymax = resid + resid_sd,
                     col = "fCO2 product\nensemble SD")) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color()+
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(biome == "Global non-polar",
             product %in% pco2_product_list),
    aes(col = product),
    # position = position_nudge(x = -0.15),
    shape = 21
  ) +
  scale_color_manual(values = color_products,
                     name = "fCO2 products") +
  new_scale_color()+
  geom_point(data = pco2_product_biome_annual_anomaly_merged %>% 
               filter(biome == "Global",
                      product %in% gobm_product_list),
             aes(col = product),
             position = position_nudge(x = 0.2),
             shape = 21) +
  scale_color_manual(values = color_products,
                     name = "GOBMs") +
  facet_nested(name ~ latitude + biome_class, 
             scales = "free", space = "free_x",
             labeller = labeller(name = x_axis_labels),
             switch = "y",
             nest_line = element_line(),
             solo_line = TRUE) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank(),
    legend.position = "none"
  )
  
p_biome <- pco2_product_biome_annual_anomaly_merged_ensemble %>% 
  filter(biome != "Global non-polar") %>% 
  ggplot(aes(basin, resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(ymin = resid - resid_sd,
                     ymax = resid + resid_sd,
                     col = "fCO2 product\nensemble SD")) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color()+
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(biome != "Global non-polar",
             product %in% pco2_product_list),
    aes(col = product),
    # position = position_nudge(x = -0.15),
    shape = 21
  ) +
  scale_color_manual(values = color_products,
                     name = "fCO2 products") +
  new_scale_color()+
  geom_point(data = pco2_product_biome_annual_anomaly_merged %>% 
               filter(biome != "Global non-polar",
                      product %in% gobm_product_list),
             aes(col = product),
             position = position_nudge(x = 0.2),
             shape = 21) +
  scale_color_manual(values = color_products,
                     name = "GOBMs") +
  facet_nested(name ~ latitude + biome_class, 
             scales = "free", space = "free_x",
             labeller = labeller(name = ""),
             # switch = "y",
             nest_line = element_line(),
             solo_line = TRUE
             ) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.right = element_text(colour = "transparent",
                                      size = 0),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank(),
    legend.position = "bottom",
    legend.direction = "vertical"
  )


ggsave(cowplot::plot_grid(p_global, p_biome,
                   align = "hv",
                   axis = "tb",
                   rel_widths = c(1,7)),
       width = 12,
       height = 8,
       dpi = 600,
       filename = "../output/biome_anomaly_ensemble_mean_pco2_products_with_integrated_flux_and_SO.jpg")

Seasonal anomalies

Flux anomaly correlation

The following plots aim to unravel the correlation between biome-, super-biome- or globally- integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot the globally and biome-integrated fluxes separately. Secondly, we normalize the anomalies to the monthly spread (expressed as standard deviation) of the anomalies from 1990 to 2021.

Annual anomalies

Absolute

pco2_product_biome_annual_anomaly %>%
  filter(biome %in% c("Global non-polar", key_biomes),
         name %in% name_core) %>%
  mutate(biome = if_else(biome == "Global non-polar", "Global non-polar", biome)) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # tail(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        method = "lm",
        fill = "grey",
        col = "grey40",
        fullrange = TRUE,
        level = 0.68
      ) +
      geom_point(
        data = . %>% filter(!year %in% c(2023, 1997, 2015)),
        aes(fill = "1990-2022"),
        shape = 21
      ) +
      scale_color_manual(values = "grey60", name = "X") +
      scale_fill_manual(values = "grey60", name = "X") +
      new_scale_fill() +
      new_scale_color() +
      geom_point(
        data = . %>% filter(year %in% c(2023, 1997, 2015)),
        aes(fill = as.factor(year)),
        shape = 21,
        size = 3
      )  +
      scale_fill_manual(
        values = rev(warm_cool_gradient[c(17,13,20)]),
        guide = guide_legend(reverse = TRUE,
                             order = 2)
      ) +
      scale_color_manual(
        values = rev(warm_cool_gradient[c(17,13,20)]),
        guide = guide_legend(reverse = TRUE,
                             order = 2)
      ) +
      labs(y = labels_breaks("fgco2_int")$i_legend_title,
           x = labels_breaks(unique(.x$name))$i_legend_title) +
      facet_grid2(
        product ~ biome,
        scales = "free",
        independent = "y"
      ) +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown(),
        legend.title = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 8,
       height = 10,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_all_pco2_products.jpg")


pco2_product_biome_annual_anomaly_ensemble <-
  pco2_product_biome_annual_anomaly %>%
  filter(name %in% name_core, product %in% pco2_product_list) %>%
  select(-c(value, fit, product)) %>%
  fgroup_by(name, biome, year) %>%
  fsummarise(sd = fsd(resid),
             mean = fmean(resid))

pco2_product_biome_annual_anomaly_ensemble <-
  full_join(
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name == "fgco2_int") %>%
      pivot_wider(values_from = c(sd, mean)),
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name != "fgco2_int")
  )



pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("fgco2_int", "temperature")) %>%
  select(-contains("value")) %>%
  pivot_wider(values_from = contains("resid")) %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(resid_temperature, resid_fgco2_int)) +
  # geom_vline(xintercept = 0) +
  # geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  )+
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = "1990-2022"
    )
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = "1990-2022"
    )
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(y = labels_breaks("fgco2_int")$i_legend_title,
       x = labels_breaks(unique("temperature"))$i_legend_title) +
  facet_wrap(~ biome, scales = "free") +
  # theme_classic() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank()
    # strip.background = element_blank()
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 8,
       height = 6,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_ensemble_mean_pco2_products.jpg")


pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("fgco2_int", "temperature")) %>%
  select(-contains("value")) %>%
  pivot_wider(values_from = contains("resid")) %>%
  ggplot(aes(resid_temperature, resid_fgco2_int)) +
  # geom_vline(xintercept = 0) +
  # geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
        level = 0.68
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = "1990-2022"
    )
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = "1990-2022"
    )
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(y = labels_breaks("fgco2_int")$i_legend_title,
       x = labels_breaks(unique("temperature"))$i_legend_title) +
  facet_wrap(~ biome, scales = "free",
             ncol = 4) +
  # theme_classic() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
b9e8f8c jens-daniel-mueller 2025-03-10
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 12,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_ensemble_mean_pco2_products_all_biomes.jpg")


pco2_product_biome_annual_anomaly %>%
  filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int)) %>% 
  group_by(product, name, biome) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(product,name,fill=correlation)) +
  geom_tile() +
  scale_fill_divergent() +
  facet_wrap(~ biome) +
  labs(title = "Correlation with FCO2 on a annual mean basis") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1),
        axis.title = element_blank(),
        legend.position = c(0.85,0.1),
        legend.direction = "horizontal")

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_anomaly %>%
filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int)) %>% 
  group_by(product, name, biome) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(product,name,fill=correlation)) +
  geom_tile() +
  scale_fill_divergent() +
  facet_wrap(~ biome) +
  labs(title = "Correlation with FCO2 on a monthly mean basis") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1),
        axis.title = element_blank(),
        legend.position = c(0.85,0.1),
        legend.direction = "horizontal")

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_anomaly %>%
filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int)) %>% 
  group_by(product, name, biome, month) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(month, correlation, col = name)) +
  geom_hline(yintercept = 0) +
  geom_path() +
  facet_grid(product ~ biome) +
  labs(title = "Correlation with FCO2 on a monthly mean basis")

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

SST based prediction

pco2_product_biome_annual_anomaly_temperature_predict <-
  full_join(
    pco2_product_biome_annual_anomaly_temperature_predict,
    pco2_product_biome_annual_anomaly_temperature_predict %>%
      filter(year != 2023) %>%
      nest(data = -c(product, biome)) %>%
      mutate(fit = map(
        data, ~ flm(formula = fgco2_int ~ temperature, data = .x)
      )) %>%
      unnest_wider(fit) %>%
      select(product, biome, slope = temperature) %>%
      mutate(slope = as.vector(slope))
  )

pco2_product_biome_annual_anomaly_temperature_predict <-
  pco2_product_biome_annual_anomaly_temperature_predict %>%
  mutate(fgco2_predict_int_biome = slope * temperature)

pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(product,
         year,
         biome,
         `true anomaly` = fgco2_int,
         `SST pattern` = fgco2_predict_int,
         `SST mean` = fgco2_predict_int_biome) %>% 
  pivot_longer(4:6,
               values_to = "resid") %>% 
  filter(biome %in% c("Global non-polar")) %>%
  ggplot(aes(year, resid))+
  geom_hline(yintercept = 0) +
  geom_path(aes(col = name))+
  geom_point(aes(fill = name), shape = 21, size = 1) +
  labs(y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap( ~ product) +
  theme(
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    legend.title = element_blank()
  )

Version Author Date
b76a7c8 jens-daniel-mueller 2025-03-04
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 10,
       height = 6,
       dpi = 600,
       filename = "../output/biome_flux_anomaly_prediction_timeseries_all_pco2_products_global.jpg")


pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(product,
         year,
         biome,
         fgco2_int,
         `SST pattern` = fgco2_predict_int,
         `SST mean` = fgco2_predict_int_biome) %>% 
  pivot_longer(contains("SST"),
               values_to = "resid") %>% 
  filter(biome %in% c("Global non-polar")) %>%
  ggplot(aes(fgco2_int, resid))+
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(x = labels_breaks("fgco2_int")$i_legend_title,
       y = labels_breaks("fgco2_predict_int")$i_legend_title) +
  facet_grid(name ~ product) +
  coord_equal() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
b76a7c8 jens-daniel-mueller 2025-03-04
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 10,
       height = 4,
       dpi = 600,
       filename = "../output/biome_flux_anomaly_prediction_correlation_all_pco2_products_global.jpg")




pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(product,
         year,
         biome,
         fgco2_int,
         `SST pattern` = fgco2_predict_int,
         `SST mean` = fgco2_predict_int_biome) %>% 
  pivot_longer(contains("SST"),
               values_to = "resid") %>% 
  filter(biome %in% c("Global non-polar")) %>%
  group_by(product, biome, name) %>% 
  summarise(correlation = cor(fgco2_int, resid)) %>% 
  ungroup() %>% 
  ggplot(aes(name, correlation, fill = name))+
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
  scale_fill_highcontrast() +
  labs(y = "FCO<sub>2</sub> anom.<br>correlation") +
  facet_grid( ~ product) +
  theme(
    axis.title.x = element_blank(),
    axis.text.x = element_blank(),
    axis.title.y = element_markdown(),
    legend.title = element_blank()
  )

Version Author Date
b76a7c8 jens-daniel-mueller 2025-03-04
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 10,
       height = 2,
       dpi = 600,
       filename = "../output/biome_flux_anomaly_prediction_correlation_coefficients_all_pco2_products_global.jpg")

pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(product,
         year,
         biome,
         fgco2_int,
         `SST pattern` = fgco2_predict_int) %>% 
  pivot_longer(contains("SST"),
               values_to = "resid") %>% 
  filter(biome %in% c(key_biomes)) %>%
  ggplot(aes(fgco2_int, resid))+
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(x = labels_breaks("fgco2_int")$i_legend_title,
       y = labels_breaks("fgco2_predict_int")$i_legend_title) +
  facet_grid(biome ~ product) +
  coord_equal() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
b76a7c8 jens-daniel-mueller 2025-03-04
pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(product, year, biome, fgco2_int, fgco2_predict_int, fgco2_predict_int_biome) %>% 
  pivot_longer(contains("predict"),
               values_to = "resid") %>% 
  filter(biome %in% c("Global non-polar")) %>%
  ggplot(aes(fgco2_int - resid, fill = name)) +
  geom_vline(xintercept = 0) +
  geom_histogram(binwidth=.05, alpha=.5, position="identity") +
  geom_density(aes(col = name), fill = "transparent") +
  facet_wrap(~ product, scales = "free") +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
b76a7c8 jens-daniel-mueller 2025-03-04

Monthly anomalies

Absolute

pco2_product_biome_monthly_detrended %>%
  filter(biome == "Global non-polar") %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

fCO2 decomposition

pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(biome %in% c("Global non-polar",key_biomes)) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(df = .x,
               title  = paste("Anomalies from predicted monthly mean |", .x$biome))
  )
[[1]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_fCO2_decomposition <-
  pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome, product) %>%
  summarise(resid = mean(resid)) %>%
  ungroup() %>%
  group_by(year, name, biome) %>%
  summarise(resid_sd = sd(resid), resid = mean(resid)) %>%
  ungroup()

pco2_product_biome_annual_fCO2_decomposition %>%
  ggplot(aes(year, resid, colour = name)) +
  geom_hline(yintercept = 0) +
  geom_path() +
  facet_wrap( ~ biome)

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_fCO2_decomposition %>%
  pivot_wider(values_from = contains("resid")) %>% 
  ggplot(aes(resid_sfco2_therm, resid_sfco2_nontherm, col = "observed")) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_abline(slope = -1, intercept = 0) +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(shape = 21) +
  scale_color_muted() +
  facet_wrap( ~ biome, scales = "free")

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
  scale_fill_manual(values = c(warm_color, cold_color, "grey80")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  facet_wrap(~ biome, scales = "free_y") +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    legend.position = c(0.9, 0.1)
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023, biome %in% c("PEQU-E", "NA-STPS")) %>%
  mutate(name = case_when(
    name == "sfco2_therm" ~ "thermal",
    name == "sfco2_nontherm" ~ "non-thermal",
    name == "sfco2_total" ~ "total"
  ),
  name = fct_inorder(name)) %>% 
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
  geom_text(
    data = . %>% filter(biome == "NA-STPS"),aes(
    label = name,
    col = name,
    hjust = if_else(sign(resid) > 0, 0, 1),
    y = resid + if_else(sign(resid) > 0, 1, -1)
  ),
  angle = 90,
  fontface = "bold") +
  scale_color_manual(values = c(warm_color, cold_color, "grey20")) +
  scale_fill_manual(values = c(warm_color, cold_color, "grey20")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  scale_y_continuous(breaks = seq(-20, 20, 20)) +
  facet_grid(. ~ fct_rev(biome)) +
  theme_classic() +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.background = element_blank(),
    strip.text = element_text(face = "bold", size = 16),
    axis.line.x = element_blank(),
    legend.position = "none"
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
# ggsave(width = 6,
#        height = 3,
#        dpi = 600,
#        filename = "../output/biome_annual_fco2_decomposition.jpg")

pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  mutate(name = case_when(
    name == "sfco2_therm" ~ "thermal",
    name == "sfco2_nontherm" ~ "non-thermal",
    name == "sfco2_total" ~ "total"
  ),
  name = fct_inorder(name)) %>% 
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
    geom_linerange(aes(
    name,
    ymin = resid - resid_sd,
    ymax = resid + resid_sd
  ), col = "grey20") +
  scale_color_manual(values = c(warm_color, cold_color, "grey20")) +
  scale_fill_manual(values = c(warm_color, cold_color, "grey20")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  facet_wrap(. ~ biome, scales = "free_y", ncol = 4) +
  theme(
    legend.title = element_blank(),
    legend.position = c(0.9,0.1),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown()
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 7,
       height = 7,
       dpi = 600,
       filename = "../output/biome_annual_fco2_decomposition_all_biomes.jpg")

Flux attribution

Seasonal

pco2_product_biome_annual_flux_attribution_ensemble <- 
pco2_product_biome_annual_flux_attribution %>%
      filter(product %in% pco2_product_list) %>% 
      group_by(biome, name) %>% 
      summarise(
        resid_sd = sd(resid),
        resid = mean(resid)) %>% 
      ungroup()



pco2_product_biome_annual_flux_attribution_ensemble %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(aes("", resid), fill = "grey90", col = "grey20") +
  geom_point(
    data = pco2_product_biome_annual_flux_attribution %>%
      filter(biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    shape = 21
  ) +
  scale_fill_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10, 10, 0.1)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(
    biome ~ name,
    labeller = labeller(name = x_axis_labels),
    scales = "free_y",
    space = "free_y",
    switch = "x"
  ) +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_flux_attribution_ensemble %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(aes(name, resid, fill = name), col = "grey20") +
  geom_linerange(aes(
    name,
    ymin = resid - resid_sd,
    ymax = resid + resid_sd
  ), col = "grey20") +
  scale_fill_bright(labels = x_axis_labels) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_wrap( ~ biome, scales = "free_y", ncol = 4) +
  theme(
    legend.title = element_blank(),
    legend.text = element_markdown(),
    legend.position = c(0.8,0.1),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown()
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 7,
       height = 7,
       dpi = 600,
       filename = "../output/biome_annual_flux_attribution_all_biomes.jpg")


ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(
    data = pco2_product_biome_annual_flux_attribution %>%
      filter(biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    position = position_dodge(width = 1),
    alpha = 0.5, col = "grey30"
  ) +
  geom_point(
    data = pco2_product_biome_monthly_flux_attribution %>%
      filter(year == 2023,
             biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    position = position_dodge(width = 1),
    shape = 21, alpha = 0.5, col = "grey30"
  ) +
  scale_fill_manual(values = color_products) +
  # scale_color_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10,10,0.2)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
                          scales = "free_y",
             space = "free_y",
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_flux_attribution %>%
  filter(year == 2023,
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_path(
    aes(month, resid, col = product)
  ) +
  geom_point(
    aes(month, resid, fill = product),
    shape = 21,
    alpha = 0.5,
    col = "grey30"
  ) +
  scale_fill_manual(values = color_products) +
  scale_color_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10,10,0.2)) +
  scale_x_continuous(position = "top", breaks = seq(1,12,3)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
             scales = "free_y",
             space = "free_y", 
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_flux_attribution %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(
      df = .x,
      title  = paste("Anomalies from predicted monthly mean |", .x$biome)
    ) +
      facet_grid(
        name ~ product,
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

Annual

# pco2_product_biome_annual_flux_attribution <-
# full_join(
# pco2_product_biome_annual_flux_attribution %>% 
#   filter(year == 2023) %>% 
#   select(-year),
# pco2_product_biome_annual_flux_attribution %>% 
#   filter(year != 2023) %>% 
#   group_by(product, biome, name) %>% 
#   summarise(resid_mean = mean(abs(resid))) %>% 
#   ungroup())

pco2_product_biome_annual_flux_attribution %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes("x", resid, fill = product),
               position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(
        aes(
          "x",
          resid_mean * sign(resid),
          group = product,
          col = paste0("Mean\nexcl.",2023)
        ),
        position = "dodge2",
        fill = "transparent"
      ) +
      labs(y = labels_breaks(unique("fgco2"))$i_legend_title,
           title = .x$biome) +
      facet_grid(
        .~name,
        labeller = labeller(name = x_axis_labels),
        switch = "x"
      ) +
      scale_color_grey() +
      theme(
        legend.title = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title.x = element_blank(),
        axis.title.y = element_markdown(),
        strip.text.x.bottom = element_markdown(),
        strip.placement = "outside",
        strip.background.x = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

Merged seasonality plots

pco2_product_biome_monthly_detrended %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("temperature", "fgco2"), biome %in% key_biomes,
         year != 2023) %>%
  group_by(month, biome, name) %>% 
  summarise(resid_sd = sd(resid)) %>% 
  ungroup() %>% 
  ggplot(aes(month, resid_sd)) +
  geom_path() +
  facet_grid(name ~ biome, scales = "free_y")

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_detrended %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("temperature", "fgco2"), biome %in% key_biomes) %>%
  p_season(dim_col = "biome", 
           title = "Ensemble mean anomalies from predicted monthly mean") +
  theme(axis.title.x = element_blank(), axis.text.x = element_blank()) +
  new_scale_color() +
  scale_color_manual(values = warm_cool_gradient[15]) +
  geom_path(
    data = pco2_product_biome_monthly_detrended %>%
      filter(
        product %in% gobm_product_list,
        year == 2023,
        name %in% c("temperature", "fgco2"),
        biome %in% key_biomes
      ) %>%
      group_by(year, month, biome, name) %>%
      summarise(across(where(is.numeric), mean)) %>%
      ungroup(),
    aes(month, resid, col = "2023\nGOBM mean")
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_sst_ensemble_mean_pco2_products.jpg")

pco2_product_biome_monthly_flux_attribution %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
         biome %in% key_biomes) %>%
  p_season(dim_col = "biome",
           title = "Ensemble mean drivers of flux anomaly",
           scales = "fixed") +
  new_scale_color() +
  scale_color_manual(values = warm_cool_gradient[15]) +
  geom_path(
    data = pco2_product_biome_monthly_flux_attribution %>%
      filter(
        product %in% gobm_product_list,
        year == 2023,
        name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
        biome %in% key_biomes
      ) %>%
      group_by(year, month, biome, name) %>%
      summarise(across(where(is.numeric), mean)) %>%
      ungroup(),
    aes(month, resid, col = "2023\nGOBM mean")
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_attribution_ensemble_mean_pco2_products.jpg")

pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("sfco2_nontherm", "sfco2_therm", "sfco2_total"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  p_season(dim_col = "biome",
           title = "Ensemble mean decomposition of fCO2 anomaly")  

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fco2_decomposition_ensemble_mean_pco2_products.jpg")
pco2_product_biome_monthly_detrended %>% 
  filter(year == 2023,
         name %in% c("temperature", "fgco2"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Anomalies from predicted monthly mean") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 3,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_sst_all_products.jpg")

pco2_product_biome_monthly_flux_attribution %>%
  filter(year == 2023,
         name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Drivers of flux anomaly") +
  facet_grid(
    name ~ biome,
    scales = "fixed",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 3,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_attribution_all_products.jpg")

pco2_product_biome_monthly_fCO2_decomposition %>% 
  filter(year == 2023,
         name %in% c("sfco2_nontherm", "sfco2_therm", "sfco2_total"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Decomposition of fCO2 anomaly") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
9fe7d3d jens-daniel-mueller 2025-03-02
9276be7 jens-daniel-mueller 2025-03-02
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fco2_decomposition_all_products.jpg")

Biome profiles

The following analysis is available for GOBMs only.

Annual means

2023 anomaly

pco2_product_profiles_annual %>%
  filter(biome %in% key_biomes,
         name %in% name_core) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_vline(xintercept = 0) +
      geom_path(aes(resid, depth, group = year), col = "grey30", alpha = 0.3) +
      geom_path(data = .x %>% filter(year == 2023),
                aes(resid, depth, col = as.factor(year)),
                linewidth = 1) +
      scale_color_brewer(palette = "Set1") +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      coord_cartesian(expand = 0) +
      facet_grid2(biome ~ product,
                  scales = "free_x", independent = "x") +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
[[1]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

Monthly means

2023 anomaly

pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         name %in% name_core) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_vline(xintercept = 0) +
      geom_path(aes(resid, depth, col = as.factor(month)),
                linewidth = 1) +
      scale_color_viridis_d(option = "magma", end = .8) +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      coord_cartesian(expand = 0) +
      facet_grid2(biome ~ product,
                  scales = "free_x", independent = "x") +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
[[1]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "ETHZ-CESM",
         name %in% name_core) %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Anomalies from monthly baseline (deseasonalized)")

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
# ggsave(width = 10,
#        height = 8,
#        dpi = 600,
#        filename = "../output/CESM_2023_anomaly_profiles.jpg")

pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "ETHZ-CESM",
         name %in% name_core) %>%
  arrange(month) %>% 
  group_by(biome, name, depth) %>% 
  mutate(resid = resid - first(resid)) %>% 
  ungroup() %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Monthly anomaly evolution relative to January 2023")

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "FESOM-REcoM",
         name %in% name_core) %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Anomalies from monthly baseline (deseasonalized)")

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
# ggsave(width = 10,
#        height = 8,
#        dpi = 600,
#        filename = "../output/FESOM_2023_anomaly_profiles.jpg")

Hovmoeller

plot_list <-
  full_join(
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      select(product, month, biome, mld = value)
  ) %>%
  group_split(name, biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      )+
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(20, 50, 100, 200, 400)) +
      coord_cartesian(expand = 0,
                      ylim = c(300,NA)) +
      facet_grid(product ~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1,
                                        lineheight = 1.5)
      )
  )

plot_list
[[1]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[5]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[6]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 12,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_all_gobm.jpg")

plot_list <-
  full_join(
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ) %>% 
      arrange(month) %>% 
      group_by(product, name, biome, depth) %>% 
      mutate(resid = if_else(name == "sdissic_stalk",
                             resid - first(resid),
                             resid)) %>% 
      ungroup(),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      select(product, month, biome, mld = value)
  ) %>%
  group_split(name, biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      )+
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(20, 50, 100, 200, 400)) +
      coord_cartesian(expand = 0,
                      ylim = c(300,NA)) +
      facet_grid(product ~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1,
                                        lineheight = 1.5)
      )
  )

ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 12,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_all_gobm_evolution.jpg")
CESM_depth_grid <- pco2_product_profiles_monthly %>%
  filter(year == 2023, 
         product == "ETHZ-CESM",
         biome %in% key_biomes,
         name %in% c("sdissic_stalk", "thetao")) %>%
  distinct(name, biome, month, depth)

pco2_product_profiles_monthly_FESOM_regrid <-
full_join(
  pco2_product_profiles_monthly %>%
    filter(
      year == 2023,
      product == "FESOM-REcoM",
      biome %in% key_biomes,
      name %in% c("sdissic_stalk", "thetao")
    ),
  CESM_depth_grid %>% mutate(product = "FESOM-REcoM")
)

pco2_product_profiles_monthly_FESOM_regrid <-
pco2_product_profiles_monthly_FESOM_regrid %>%
  arrange(product, name, biome, month, depth)
  
  
pco2_product_profiles_monthly_FESOM_regrid <-
pco2_product_profiles_monthly_FESOM_regrid %>%
  arrange(depth) %>%
  group_by(product, name, biome, month) %>%
  mutate(resid = spline(
    depth,
    resid,
    method = "natural",
    xout = depth
  )$y) %>%
  ungroup()

CESM_depth <- 
  CESM_depth_grid %>% distinct(depth) %>% pull()

pco2_product_profiles_monthly_FESOM_regrid <-
  pco2_product_profiles_monthly_FESOM_regrid %>%
  filter(depth %in% CESM_depth)


pco2_product_profiles_monthly_merged <-
  bind_rows(
    pco2_product_profiles_monthly_FESOM_regrid,
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        product == "ETHZ-CESM",
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      )
  )


pco2_product_profiles_monthly_ensemble <-
  pco2_product_profiles_monthly_merged %>%
  group_by(name, biome, month, depth) %>%
  summarise(resid = mean(resid)) %>%
  ungroup()


pco2_product_profiles_monthly_ensemble <-
  full_join(
    pco2_product_profiles_monthly_ensemble %>%
      filter(
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      group_by(month, biome) %>% 
      summarise(mld = mean(value)) %>% 
      ungroup()
  ) 



# plot_list <-
  pco2_product_profiles_monthly_ensemble %>%
  group_split(name, biome) %>% 
  head(1) %>% 
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(50, 100, 200, 400)) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1, lineheight = 1.5)
      )
  )
[[1]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 8,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_ensemble_mean_gobm.jpg")
labels_breaks_hov <- function(i_name, i_biome) {
  
  if (i_name == "sdissic_stalk") {
    i_legend_title <- "sDIC - sTA<br>anom.<br>(μmol kg<sup>-1</sup>)"
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp.<br>anom.<br>(°C)"
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "NA-SPSS") {
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "NA-SPSS") {
    i_breaks <- c(-Inf, seq(-0.4, 0.4, 0.1), Inf)
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "NA-STPS") {
    i_breaks <- c(-Inf, seq(-2.4, 2.4, 0.6), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "NA-STPS") {
    i_breaks <- c(-Inf, seq(-0.6, 0.6, 0.15), Inf)
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "PEQU-E") {
    i_breaks <- c(-Inf, seq(-32, 32, 8), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "PEQU-E") {
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  i_breaks_labels <- i_breaks[!i_breaks == Inf]
  i_breaks_labels <- i_breaks_labels[!i_breaks_labels == -Inf]
  i_breaks_labels[seq_along(i_breaks_labels) %% 2 == 0] <- ""
  
  all_labels_breaks <- lst(i_legend_title, i_breaks, i_breaks_labels)
  
  return(all_labels_breaks)
  
}

labels_breaks_hov("sdissic_stalk", "NA-SPSS")
$i_legend_title
[1] "sDIC - sTA<br>anom.<br>(μmol kg<sup>-1</sup>)"

$i_breaks
 [1] -Inf -2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0  Inf

$i_breaks_labels
[1] "-2" ""   "-1" ""   "0"  ""   "1"  ""   "2" 
plot_list_left <-
  pco2_product_profiles_monthly_ensemble %>%
  arrange(month) %>%
  group_by(name, biome, depth) %>%
  mutate(resid = if_else(name == "sdissic_stalk", resid - first(resid), resid)) %>%
  ungroup() %>%
  group_split(biome, name) %>%
  head(2) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid),
                          breaks = labels_breaks_hov(.x %>% distinct(name),
                                                     .x %>% distinct(biome))$i_breaks) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        super = ScaleDiscretised,
        name = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_legend_title,
        labels = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_breaks_labels
      ) +
      # scale_fill_gradientn(
      #   colours = warm_cool_gradient,
      #   rescaler = ~ scales::rescale_mid(.x, mid = 0),
      #   super = ScaleDiscretised,
      #   name = labels_breaks(.x %>% distinct(name))$i_legend_title
      # ) +
      scale_y_continuous(
        trans = trans_reverser("sqrt"),
        breaks = c(20, 50, 100, 200, 400)
      ) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      labs(y = "Depth (m)",
           x = "Month") +
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(5, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(hjust = 1,
                                        lineheight = 1.5)
      )
  )

plot_list_right <-
  pco2_product_profiles_monthly_ensemble %>%
  arrange(month) %>%
  group_by(name, biome, depth) %>%
  mutate(resid = if_else(name == "sdissic_stalk", resid - first(resid), resid)) %>%
  ungroup() %>%
  group_split(biome, name) %>%
  tail(4) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid),
                          breaks = labels_breaks_hov(.x %>% distinct(name),
                                                     .x %>% distinct(biome))$i_breaks) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        super = ScaleDiscretised,
        name = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_legend_title,
        labels = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_breaks_labels
      ) +
      scale_y_continuous(
        trans = trans_reverser("sqrt"),
        breaks = c(20, 50, 100, 200, 400)
      ) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      labs(y = "Depth (m)", x = "Month")+
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(5, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        # legend.margin = margin(0, 0, 0, 0),
        # legend.justification = "left",
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_blank()
      )
  )

plot_list <- c(plot_list_left, plot_list_right)

ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 10,
       height = 6,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_ensemble_mean_gobm_evolution.jpg")

sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: openSUSE Leap 15.6

Matrix products: default
BLAS/LAPACK: /usr/local/OpenBLAS-0.3.28/lib/libopenblas_haswellp-r0.3.28.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Europe/Zurich
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.4.0    cmocean_0.3-2       ggh4x_0.3.0        
 [4] scales_1.3.0        biscale_1.0.0       ggtext_0.1.2       
 [7] khroma_1.14.0       ggnewscale_0.5.0    terra_1.8-5        
[10] sf_1.0-19           rnaturalearth_1.0.1 geomtextpath_0.1.4 
[13] colorspace_2.1-1    marelac_2.1.11      shape_1.4.6.1      
[16] ggforce_0.4.2       metR_0.16.0         scico_1.5.0        
[19] patchwork_1.3.0     collapse_2.0.18     lubridate_1.9.3    
[22] forcats_1.0.0       stringr_1.5.1       dplyr_1.1.4        
[25] purrr_1.0.2         readr_2.1.5         tidyr_1.3.1        
[28] tibble_3.2.1        ggplot2_3.5.1       tidyverse_2.0.0    
[31] workflowr_1.7.1    

loaded via a namespace (and not attached):
 [1] DBI_1.2.3               rlang_1.1.4             magrittr_2.0.3         
 [4] git2r_0.35.0            e1071_1.7-16            compiler_4.4.2         
 [7] mgcv_1.9-1              getPass_0.2-4           systemfonts_1.1.0      
[10] callr_3.7.6             vctrs_0.6.5             pkgconfig_2.0.3        
[13] crayon_1.5.3            fastmap_1.2.0           backports_1.5.0        
[16] labeling_0.4.3          utf8_1.2.4              promises_1.3.2         
[19] rmarkdown_2.29          markdown_1.13           tzdb_0.4.0             
[22] ps_1.8.1                oce_1.8-3               ragg_1.3.3             
[25] gsw_1.2-0               bit_4.5.0               xfun_0.49              
[28] cachem_1.1.0            jsonlite_1.8.9          later_1.4.1            
[31] tweenr_2.0.3            parallel_4.4.2          R6_2.5.1               
[34] RColorBrewer_1.1-3      bslib_0.8.0             stringi_1.8.4          
[37] jquerylib_0.1.4         Rcpp_1.0.13-1           knitr_1.49             
[40] seacarb_3.3.3           Matrix_1.7-1            splines_4.4.2          
[43] httpuv_1.6.15           timechange_0.3.0        tidyselect_1.2.1       
[46] rstudioapi_0.17.1       yaml_2.3.10             codetools_0.2-20       
[49] processx_3.8.4          lattice_0.22-6          withr_3.0.2            
[52] evaluate_1.0.1          isoband_0.2.7           rnaturalearthdata_1.0.0
[55] units_0.8-5             proxy_0.4-27            polyclip_1.10-7        
[58] xml2_1.3.6              pillar_1.9.0            whisker_0.4.1          
[61] KernSmooth_2.23-24      checkmate_2.3.2         generics_0.1.3         
[64] vroom_1.6.5             rprojroot_2.0.4         hms_1.1.3              
[67] commonmark_1.9.2        munsell_0.5.1           class_7.3-22           
[70] glue_1.8.0              tools_4.4.2             data.table_1.16.2      
[73] fs_1.6.5                cowplot_1.1.3           grid_4.4.2             
[76] nlme_3.1-166            cli_3.6.3               SolveSAPHE_2.1.0       
[79] textshaping_0.4.0       fansi_1.0.6             viridisLite_0.4.2      
[82] svglite_2.1.3           gtable_0.3.6            sass_0.4.9             
[85] digest_0.6.37           classInt_0.4-10         farver_2.1.2           
[88] memoise_2.0.1           htmltools_0.5.8.1       lifecycle_1.0.4        
[91] httr_1.4.7              here_1.0.1              gridtext_0.1.5         
[94] bit64_4.5.2             MASS_7.3-61