Last updated: 2024-09-20

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d6d6440. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    data
    Ignored:    output/

Unstaged changes:
    Modified:   analysis/child/pCO2_product_synopsis.Rmd
    Modified:   analysis/pco2_product_mapping_skill.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/pco2_product_synopsis_2023.Rmd) and HTML (docs/pco2_product_synopsis_2023.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 713d232 jens-daniel-mueller 2024-09-12 Build site.
html 878c674 jens-daniel-mueller 2024-09-10 Build site.
html 4acb1fc jens-daniel-mueller 2024-09-05 Build site.
html 3bb8433 jens-daniel-mueller 2024-09-03 Build site.
html c50054d jens-daniel-mueller 2024-08-29 Build site.
html aecb187 jens-daniel-mueller 2024-08-28 Build site.
html 0f5b472 jens-daniel-mueller 2024-08-27 Build site.
html 08ca8c7 jens-daniel-mueller 2024-08-27 Build site.
html d82bd91 jens-daniel-mueller 2024-08-27 Build site.
html 681629f jens-daniel-mueller 2024-08-26 Build site.
html 6a96e1f jens-daniel-mueller 2024-08-26 Build site.
html c62d92d jens-daniel-mueller 2024-08-23 Build site.
html 2f165ec jens-daniel-mueller 2024-07-23 Build site.
html 2a28b07 jens-daniel-mueller 2024-07-22 Build site.
html 4ef742b jens-daniel-mueller 2024-07-20 Build site.
html a58162a jens-daniel-mueller 2024-07-11 Build site.
html 4a437fb jens-daniel-mueller 2024-07-09 Build site.
html 4897f6e jens-daniel-mueller 2024-07-08 Build site.
html ba4aaac jens-daniel-mueller 2024-07-08 Build site.
html 67956dd jens-daniel-mueller 2024-07-08 Build site.
html b7806ad jens-daniel-mueller 2024-07-02 Build site.
html dd97823 jens-daniel-mueller 2024-06-28 Build site.
html c6f967e jens-daniel-mueller 2024-06-28 Build site.
html b18b0e5 jens-daniel-mueller 2024-06-28 Build site.
html 197dac4 jens-daniel-mueller 2024-06-27 Build site.
html 9589349 jens-daniel-mueller 2024-06-27 Build site.
html 8cdfed7 jens-daniel-mueller 2024-06-21 Build site.
html aeca619 jens-daniel-mueller 2024-06-19 Build site.
html 478e699 jens-daniel-mueller 2024-06-14 Build site.
html d2a80a9 jens-daniel-mueller 2024-06-14 Build site.
html f03b1d8 jens-daniel-mueller 2024-06-12 Build site.
html d46002d jens-daniel-mueller 2024-06-12 manual commit
html 34b4fe2 jens-daniel-mueller 2024-06-12 Build site.
html 5261667 jens-daniel-mueller 2024-06-11 manual commit
html 2b34bf8 jens-daniel-mueller 2024-06-11 manual commit
html 6954c65 jens-daniel-mueller 2024-06-06 Build site.
html 54af933 jens-daniel-mueller 2024-06-03 Build site.
html 2454031 jens-daniel-mueller 2024-06-01 Build site.
html e83b65a jens-daniel-mueller 2024-05-31 Build site.
html 7919445 jens-daniel-mueller 2024-05-31 Build site.
html 6fc213f jens-daniel-mueller 2024-05-31 Build site.
html 7c448f7 jens-daniel-mueller 2024-05-31 Build site.
html bf01e6c jens-daniel-mueller 2024-05-31 Build site.
html 4e9d7c0 jens-daniel-mueller 2024-05-30 Build site.
html fc1b92d jens-daniel-mueller 2024-05-30 Build site.
html 4d3ccb2 jens-daniel-mueller 2024-05-29 Build site.
html 7ad8576 jens-daniel-mueller 2024-05-29 Build site.
html 0493049 jens-daniel-mueller 2024-05-29 Build site.
html acaac5f jens-daniel-mueller 2024-05-28 Build site.
html b99b329 jens-daniel-mueller 2024-05-28 Build site.
html b754e95 jens-daniel-mueller 2024-05-28 Build site.
html fbba0a0 jens-daniel-mueller 2024-05-28 Build site.
html d533f68 jens-daniel-mueller 2024-05-28 Build site.
html 555c1c8 jens-daniel-mueller 2024-05-27 Build site.
html 7b6f27c jens-daniel-mueller 2024-05-27 Build site.
html 4be90dd jens-daniel-mueller 2024-05-27 Build site.
html e1e0ccb jens-daniel-mueller 2024-05-27 Build site.
html 7013182 jens-daniel-mueller 2024-05-27 Build site.
html 97eff6a jens-daniel-mueller 2024-05-25 Build site.
html fe97ed3 jens-daniel-mueller 2024-05-25 Build site.
html ac8cc7e jens-daniel-mueller 2024-05-24 Build site.
html 12f6571 jens-daniel-mueller 2024-05-22 Build site.
html 7868a54 jens-daniel-mueller 2024-05-22 Build site.
html 571e2f8 jens-daniel-mueller 2024-05-22 Build site.
html 563345f jens-daniel-mueller 2024-05-21 Build site.
html 29e0ec4 jens-daniel-mueller 2024-05-21 Build site.
html 7c08e1c jens-daniel-mueller 2024-05-21 Build site.
html 1eefab2 jens-daniel-mueller 2024-05-21 Build site.
html 5af03d1 jens-daniel-mueller 2024-05-17 Build site.
html a29d870 jens-daniel-mueller 2024-05-16 Build site.
html dbc1fc6 jens-daniel-mueller 2024-05-16 Build site.
html aea0b99 jens-daniel-mueller 2024-05-16 Build site.
html 3310cf6 jens-daniel-mueller 2024-05-16 Build site.
html fcd728c jens-daniel-mueller 2024-05-16 Build site.
html 960912c jens-daniel-mueller 2024-05-16 Build site.
html b7d0689 jens-daniel-mueller 2024-05-15 Build site.
html 00ad9d5 jens-daniel-mueller 2024-05-15 Build site.
html 47f8868 jens-daniel-mueller 2024-05-15 Build site.
html 589243f jens-daniel-mueller 2024-05-15 Build site.
html 1e4c153 jens-daniel-mueller 2024-05-14 Build site.
html 009791f jens-daniel-mueller 2024-05-14 Build site.
html 8c96de4 jens-daniel-mueller 2024-05-08 Build site.
html 3fea035 jens-daniel-mueller 2024-05-08 Build site.
html 4b81eaf jens-daniel-mueller 2024-05-07 Build site.
html 60abdac jens-daniel-mueller 2024-04-23 Build site.
html e44a62b jens-daniel-mueller 2024-04-23 Build site.
html 7f9c687 jens-daniel-mueller 2024-04-23 Build site.
html 1ff6eb0 jens-daniel-mueller 2024-04-22 Build site.
html 9ecd92e jens-daniel-mueller 2024-04-22 Build site.
html 231f7cd jens-daniel-mueller 2024-04-17 Build site.
html f6e9707 jens-daniel-mueller 2024-04-17 Build site.
html ce4e2a6 jens-daniel-mueller 2024-04-17 Build site.
html a5911f0 jens-daniel-mueller 2024-04-17 Build site.
html 6709afa jens-daniel-mueller 2024-04-12 Build site.
html 58e3680 jens-daniel-mueller 2024-04-11 Build site.
html 238d229 jens-daniel-mueller 2024-04-11 Build site.
html dfcf790 jens-daniel-mueller 2024-04-11 Build site.
html 139bc97 jens-daniel-mueller 2024-04-11 manual deletion of files
html 2c6f421 jens-daniel-mueller 2024-04-11 Build site.
html 37ccea4 jens-daniel-mueller 2024-04-08 Build site.
html 19f40c9 jens-daniel-mueller 2024-04-05 Build site.
Rmd 2336de2 jens-daniel-mueller 2024-04-05 ensemble mean estimates added
html 2793f67 jens-daniel-mueller 2024-04-05 Build site.
html 69dc18c jens-daniel-mueller 2024-04-04 Build site.
html c9d994c jens-daniel-mueller 2024-04-04 Build site.
html 40cb158 jens-daniel-mueller 2024-04-03 Build site.
html 7bb6113 jens-daniel-mueller 2024-04-03 Build site.
Rmd 7be0147 jens-daniel-mueller 2024-04-03 trend maps included
html 27b48a1 jens-daniel-mueller 2024-04-03 Build site.
html a83c8fc jens-daniel-mueller 2024-04-03 Build site.
Rmd 53c89bd jens-daniel-mueller 2024-04-03 rebuild entire website incl 2022 anomalies

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")
pCO2_product_synopsis <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_synopsis.Rmd"),
    year_anom = 2023
  )

Read data

map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

key_biomes <- 
key_biomes[!str_detect(key_biomes, "NP")]


biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))

biome_mask_print <-
  biome_mask %>%
  filter(!str_detect(biome, "SO-SPSS|SO-ICE|Arctic")) %>%
  select(lon, lat)

region_biomes <-
  read_rds(here::here("data/region_biomes.rds"))
nino_sst <- read_table(here::here("data/nino34sst.txt"))

nino_sst <-
  nino_sst %>%
  select(year = YR,
         month = MON,
         resid = ANOM_3)
name_core <- c("fgco2", "fgco2_int", "fgco2_hov",
               # "sfco2", "atm_fco2", 
               "dfco2",
               # "kw_sol", 
               "temperature", 
               # "salinity",
               # "dissic", "talk", "sdissic", "stalk", "cstar", 
               "sdissic_stalk",
               "no3", "o2",
               "mld", "thetao", 
               # "so",
               "intpp", "chl",
               "sfco2_therm","sfco2_nontherm","sfco2_total",
               "resid_fgco2_dfco2", "resid_fgco2_kw_sol", "resid_fgco2_dfco2_kw_sol")


all_product_list <- c("OceanSODAv2",
                      "SOM-FFN",
                      "fCO2-Residual",
                      "CMEMS",
                      "ETHZ-CESM",
                      "FESOM-REcoM")

gobm_product_list <- c("ETHZ-CESM",
                       "FESOM-REcoM")


pco2_product_list <- c("OceanSODAv2",
                      "SOM-FFN",
                      "fCO2-Residual",
                      "CMEMS"
                      )

color_products <- c(
  "OceanSODAv2" = "#672933",
  "SOM-FFN" = "#d1495b",
  "fCO2-Residual" = "#edae49",
  "CMEMS" = "#AD8E55",
  "ETHZ-CESM" = "#66a182",
  "FESOM-REcoM" = "#00798c"
)

warm_color <- "#c33c57"
cold_color <- "#3f6fb3"
trend_color <- "#66a182"


warm_cool_gradient <- 
rev(c(
  "#61195a",
  "#6f185f",
  "#8d1e62",
  "#aa2960",
  "#c33c57",
  "#da5351",
  "#e77155",
  "#f09264",
  "#f09264",
  "#fbd297",
  "#fefefe",
  "#c6e8ea",
  "#97d4db",
  "#79bcd0",
  "#5ca2c6",
  "#4a88bc",
  "#3f6fb3",
  "#3e56a2",
  "#3c3f82",
  "#2f2c5a",
  "#272648"
))

# cmocean("balance")(100)
files <- list.files(here::here("data/"),
                    pattern = "FESOM-REcoM")

file_types <- str_remove(files, paste0("FESOM-REcoM_",2023,"_"))
file_types <- str_remove(file_types, ".csv")

for(i_file_type in file_types) {
  
  # print(i_file_type)
  # i_file_type <- file_types[1]
  
  files <- list.files(here::here("data/"),
                      pattern = paste(2023, i_file_type, sep = "_"),
                      full.names = TRUE)
  

  pco2_product <-
    read_csv(files, id = "product")
  
  pco2_product <-
    pco2_product %>%
    mutate(
      product = str_extract(
        product,
        "OceanSODAv2|SOM-FFN|CMEMS|fCO2-Residual|ETHZ-CESM|FESOM-REcoM"
      )
    )
  
  if (!str_detect(files[1], "slope")) {
    pco2_product <-
      pco2_product %>%
      mutate(
        name = factor(name, levels = name_core),
        product = factor(product, levels = all_product_list)
      ) %>%
      filter(!is.na(name))
  } else {
    pco2_product <-
      pco2_product %>%
      mutate(product = factor(product, levels = all_product_list))
  }
  
  assign(paste("pco2_product", i_file_type, sep = "_"), pco2_product)

}

Define labels and breaks

labels_breaks <- function(i_name) {
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "dfco2") {
    i_legend_title <- "ΔfCO<sub>2</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "atm_fco2") {
    i_legend_title <- "fCO<sub>2,atm</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  if (i_name == "sol") {
    i_legend_title <- "K<sub>0</sub> anom.<br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "kw") {
    i_legend_title <- "k<sub>w</sub> anom.<br>(m yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "kw_sol") {
    i_legend_title <- "k<sub>w</sub> K<sub>0</sub> anom.<br>(mol yr<sup>-1</sup> m<sup>-2</sup> µatm<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.015, 0.015, 0.003), Inf)
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "intpp") {
    i_legend_title <- "NPP<sub>int</sub> anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-3, 3, 0.5), Inf)
  }
  
  if (i_name == "no3") {
    i_legend_title <- "NO<sub>3</sub> anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-1.5, 1.5, 0.3), Inf)
  }
  
  if (i_name == "o2") {
    i_legend_title <- "O<sub>2</sub> anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "dissic") {
    i_legend_title <- "DIC anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sdissic") {
    i_legend_title <- "sDIC anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "cstar") {
    i_legend_title <- "C* anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "talk") {
    i_legend_title <- "TA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "stalk") {
    i_legend_title <- "sTA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sdissic_stalk") {
    i_legend_title <- "sDIC - sTA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sfco2_total") {
    i_legend_title <- "total"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "sfco2_therm") {
    i_legend_title <- "thermal"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "sfco2_nontherm") {
    i_legend_title <- "non-thermal"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(PgC yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp. anom.<br>(°C)"
    i_breaks <- c(-Inf, seq(-1.6, 1.6, 0.4), Inf)
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST anom.<br>(°C)"
    i_breaks <- c(-Inf, seq(-1.6, 1.6, 0.4), Inf)
  }
  
  if (i_name == "salinity") {
    i_legend_title <- "SSS anom."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "so") {
    i_legend_title <- "Salinity anom."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "chl") {
    i_legend_title <- "lg(Chl-a) anom.<br>(lg(mg m<sup>-3</sup>))"
    i_breaks <- c(-Inf, seq(-0.2, 0.2, 0.05), Inf)
  }
  
  if (i_name == "mld") {
    i_legend_title <- "MLD anom.<br>(m)"
    i_breaks <- c(-Inf, seq(-40, 40, 10), Inf)
  }
  
  if (i_name == "press") {
    i_legend_title <- "pressure<sub>atm</sub> anom.<br>(Pa)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "wind") {
    i_legend_title <- "Wind anom.<br>(m sec<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "SSH") {
    i_legend_title <- "SSH anom.<br>(m)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fice") {
    i_legend_title <- "Sea ice anom.<br>(%)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  
  if (i_name == "resid_fgco2") {
    i_legend_title <-
      "Observed"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_dfco2") {
    i_legend_title <-
      "ΔfCO<sub>2</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_dfco2_kw_sol") {
    i_legend_title <-
      "ΔfCO<sub>2</sub> ⨯ k<sub>w</sub> K<sub>0</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_sum") {
    i_legend_title <-
      "∑"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_offset") {
    i_legend_title <-
      "Obs. - ∑"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  all_labels_breaks <- lst(i_legend_title, i_breaks)
  
  return(all_labels_breaks)
  
}

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "dfco2" = labels_breaks("dfco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "kw_sol" = labels_breaks("kw_sol")$i_legend_title,
    "intpp" = labels_breaks("intpp")$i_legend_title,
    "no3" = labels_breaks("no3")$i_legend_title,
    "o2" = labels_breaks("o2")$i_legend_title,
    "dissic" = labels_breaks("dissic")$i_legend_title,
    "sdissic" = labels_breaks("sdissic")$i_legend_title,
    "cstar" = labels_breaks("cstar")$i_legend_title,
    "talk" = labels_breaks("talk")$i_legend_title,
    "stalk" = labels_breaks("stalk")$i_legend_title,
    "sdissic_stalk" = labels_breaks("sdissic_stalk")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "sfco2_total" = labels_breaks("sfco2_total")$i_legend_title,
    "sfco2_therm" = labels_breaks("sfco2_therm")$i_legend_title,
    "sfco2_nontherm" = labels_breaks("sfco2_nontherm")$i_legend_title,
    "fgco2" = labels_breaks("fgco2")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "thetao" = labels_breaks("thetao")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title,
    "salinity" = labels_breaks("salinity")$i_legend_title,
    "so" = labels_breaks("so")$i_legend_title,
    "chl" = labels_breaks("chl")$i_legend_title,
    "mld" = labels_breaks("mld")$i_legend_title,
    "press" = labels_breaks("press")$i_legend_title,
    "wind" = labels_breaks("wind")$i_legend_title,
    "SSH" = labels_breaks("SSH")$i_legend_title,
    "fice" = labels_breaks("fice")$i_legend_title,
    "resid_fgco2" = labels_breaks("resid_fgco2")$i_legend_title,
    "resid_fgco2_dfco2" = labels_breaks("resid_fgco2_dfco2")$i_legend_title,
    "resid_fgco2_kw_sol" = labels_breaks("resid_fgco2_kw_sol")$i_legend_title,
    "resid_fgco2_dfco2_kw_sol" = labels_breaks("resid_fgco2_dfco2_kw_sol")$i_legend_title,
    "resid_fgco2_sum" = labels_breaks("resid_fgco2_sum")$i_legend_title,
    "resid_fgco2_offset" = labels_breaks("resid_fgco2_offset")$i_legend_title
  )

# create axis labels for absolute values by removing anom.
x_axis_labels_abs <- x_axis_labels
x_axis_labels_abs <- str_replace_all(x_axis_labels_abs, " anom.", "") 
names(x_axis_labels_abs) <- names(x_axis_labels)

Functions

Seasonality plots

p_season <- function(df, 
                     dim_row = "name", 
                     dim_col = "product", 
                     title = NULL, 
                     var = "resid",
                     scales = "free_y") {
  
  p <- ggplot(data = df,
              aes(month, !!ensym(var)))
  
  if(var == "resid"){
      p <- p +
        geom_hline(yintercept = 0, linewidth =0.5)
    
  }
  
  
  
  p <- p +
      geom_path(data = . %>% filter(year != 2023),
                aes(group = as.factor(year),
                    col = as.factor(paste(min(year), max(year), sep = "-"))), 
                alpha = 0.5)+
      geom_path(data = . %>% 
                  filter(year != 2023) %>% 
                  group_by_at(vars(month, dim_col, dim_row)) %>% 
                  summarise(!!ensym(var) := mean(!!ensym(var))),
                aes(col = "Climatological\nmean"), 
                linewidth = 0.7) +
    scale_color_manual(values = c("grey60", "grey10"),
                       guide = guide_legend(order = 2,
                                            reverse = TRUE)) +
    new_scale_color()+
    geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(year)),
                linewidth = 1.2) +
      scale_color_manual(
        values = warm_color,
        guide = guide_legend(order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = title,
           x = "Month")
  
    if(df %>% filter(name == "fgco2") %>% nrow() > 0 & "value" %in% names(df)){
    
    df_sink <- df %>% 
      filter(year == 2023,
             name == "fgco2")
    
      p <- p +
          geom_point(data = df_sink %>% filter(value < 0),
             aes(shape = "Sink"), fill = "white") +
          geom_point(data = df_sink %>% filter(value >= 0),
             aes(shape = "Source"), fill = "white") +
        scale_shape_manual(values = c(25,24))
    
  }
  
  
  if (!(is.null(dim_col))) {
    p <- p +
      facet_grid2(
        as.formula(paste(dim_row, "~", dim_col)),
        scales = scales,
        # independent = "y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
    
    
  } else {
    p <- p +
      facet_grid(
        as.formula(paste(dim_row, "~ .")),
        scales = scales,
        # independent = "y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
  }
  
  p <- p +
    theme(
      strip.text.y.left = element_markdown(),
      strip.placement = "outside",
      strip.background.y = element_blank(),
      axis.title.y = element_blank(),
      legend.title = element_blank(),
      axis.text.y.right = element_blank()
    ) 
    # scale_y_continuous(sec.axis = dup_axis())
  
  p
  
}

fCO2 decomposition

fco2_decomposition <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  # group_by <- quos(biome, year, month)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    df %>%
    filter(name %in% c("temperature", "sfco2"))
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "temperature") %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid),
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "sfco2") %>%
        select(-c(value, resid)) %>%
        pivot_wider(values_from = fit)
    )
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_therm = (sfco2 * exp(0.0423 * temperature)) - sfco2)
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition,
      df %>%
        filter(name %in% c("sfco2")) %>%
        select(-c(value, fit, name)) %>%
        rename(sfco2_total = resid)
    )
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_nontherm = sfco2_total - sfco2_therm)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    select(-c(temperature, sfco2)) %>%
    pivot_longer(starts_with("sfco2"),
                 values_to = "resid")
  
}

Flux attribution

flux_attribution <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  
  pco2_product_flux_attribution <-
    df %>%
    filter(name %in% c("dfco2", "kw_sol", "fgco2"))
  
  
  pco2_product_flux_attribution <-
    inner_join(
      pco2_product_flux_attribution %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid,
                    names_prefix = "resid_"),
      pco2_product_flux_attribution %>%
        select(-c(value, resid)) %>%
        filter(name != "fgco2") %>%
        pivot_wider(values_from = fit)
    )
  
    pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    mutate(
      resid_fgco2_dfco2 = resid_dfco2 * kw_sol,
      resid_fgco2_kw_sol = resid_kw_sol * dfco2,
      resid_fgco2_dfco2_kw_sol = resid_dfco2 * resid_kw_sol
      # resid_fgco2_sum = resid_fgco2_dfco2 + resid_fgco2_kw_sol + resid_fgco2_dfco2_kw_sol
    )
  
  # pco2_product_flux_attribution <-
  #   pco2_product_flux_attribution %>%
  #   mutate(resid_fgco2_offset = resid_fgco2 - resid_fgco2_sum)
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    select(product, !!!group_by, starts_with("resid_fgco2")) %>%
    pivot_longer(starts_with("resid_"),
                 values_to = "resid")
  
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    filter(str_detect(name, "dfco2|kw_sol")) %>% 
    mutate(name = factor(
      name,
      levels = c(
        "resid_fgco2",
        "resid_fgco2_dfco2",
        "resid_fgco2_kw_sol",
        "resid_fgco2_dfco2_kw_sol",
        "resid_fgco2_sum",
        "resid_fgco2_offset"
      )
    ))
  
}

Robinson map

bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 76, ymin = -54), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-54,76),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005


p_map_mdim_robinson <-
  function(df,
           df_uncertainty = NULL,
           dim_row = NULL,
           dim_col = NULL,
           dim_wrap = NULL,
           n_col = NULL,
           var,
           legend_title = NULL,
           breaks = NULL,
           n_labels = 2,
           target_crs = "+proj=robin +over +lon_0=-160",
           col = "divergent",
           col_scale = "warm_cold",
           plot_latitudes = FALSE,
           legend_position = "top") {
    
    if (is.null(dim_col) & is.null(dim_row) & is.null(dim_wrap)) {
      df_raster <- df %>%
        select(lon, lat, all_of(var)) %>% 
        rast(crs = "+proj=longlat")
      
      df_raster <-
        project(df_raster, target_crs)
      
      df_tibble <-
        df_raster %>%
        as.data.frame(xy = TRUE, na.rm = FALSE) %>%
        as_tibble() %>%
        rename(lon = x, lat = y) %>%
        drop_na()
      
      
    } else {
      
      # if (!is.null(dim_col) & !is.null(dim_row) & !is.null(dim_wrap)) {
      #   names_sep <- ";"
      # } else {
      #   names_sep <- NULL
      # }
      
      names_sep <- ";"

      df_raster <- df %>%
        select(lon, lat,
               all_of(c(dim_row, dim_col, dim_wrap)),
               all_of(var)) %>%
        pivot_wider(names_from = all_of(c(dim_row, dim_col, dim_wrap)), 
                    values_from = all_of(var),
                    names_sep = names_sep) %>%
        rast(crs = "+proj=longlat")
      
      
      df_raster <-
        project(df_raster, target_crs)

           
            
      if (length(c(dim_row, dim_col, dim_wrap)) <= 1) {
        names_sep <- NULL
      }

      df_tibble <-
        df_raster %>%
        as.data.frame(xy = TRUE, na.rm = FALSE) %>%
        as_tibble() %>%
        rename(lon = x, lat = y) %>%
        pivot_longer(
          -c(lon, lat),
          names_sep = names_sep,
          names_to = c(dim_row, dim_col, dim_wrap),
          values_to = var
        ) %>%
        drop_na()
      
      
    }
    
    
    if (is.null(legend_title)) {
      legend_title <- var
    }
    
    var <- sym(var)
    
    p_map <- ggplot() +
      geom_raster(data = df_tibble, aes(
        x = lon,
        y = lat,
        fill = cut(!!var, breaks, include.lowest = TRUE)
      ))
    
    
    p_map <- p_map +
      geom_sf(data = worldmap_trans %>% select(-name),
              fill = "grey90",
              col = "grey90") +
      geom_sf(data = coastline_trans, linewidth = 0.3) +
      geom_sf(data = bbox_graticules_trans, linewidth = 0.5)
    
    if (plot_latitudes) {
      p_map <- p_map +
        geom_sf(data = latitude_graticules_trans,
                col = "grey60",
                linewidth = 0.2) +
        geom_sf_text(
          data = latitude_labels_trans,
          aes(label = lat_label),
          size = 3,
          col = "grey60"
        )
    }
    
    if (!is.null(df_uncertainty)) {
      p_map <- p_map +
        geom_sf(
          data = df_uncertainty %>% filter(signif_single == 0),
          col = "grey60",
          size = 0.05
        )
    }
    
    p_map <- p_map +
      coord_sf(
        crs = target_crs,
        ylim = lat_lim,
        xlim = lon_lim,
        expand = FALSE
      )
    
    if (legend_position == "top") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(0.3, "cm"),
            barwidth = unit(8, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "top",
            direction = "horizontal"
          )
        ) +
        theme_void() +
        theme(
          legend.margin=margin(t = .1, b = .1, unit='cm'),
          plot.margin = margin(.1,.1,.1,.1,"cm"),
          panel.spacing = unit(.1,"cm"),
          legend.position = "top",
          legend.title.align = 1,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 1, lineheight = 1.5)
        )
    }
    
    if (legend_position == "bottom") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(0.3, "cm"),
            barwidth = unit(8, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "bottom",
            direction = "horizontal"
          )
        ) +
        theme_void() +
        theme(
          legend.margin=margin(t = .1, b = .1, unit='cm'),
          plot.margin = margin(.1,.1,.1,.1,"cm"),
          panel.spacing = unit(.1,"cm"),
          legend.position = "bottom",
          legend.title.align = 1,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 1, lineheight = 1.5)
        )
    }
    
    if (legend_position == "right") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(6, "cm"),
            barwidth = unit(0.3, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "right",
            direction = "vertical"
          )
        ) +
        theme_void() +
        theme(
          legend.position = "right",
          legend.title.align = 0,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 0, lineheight = 1.5)
        )
    }
    
    if (legend_position == "left") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(6, "cm"),
            barwidth = unit(0.3, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "left",
            direction = "vertical"
          )
        ) +
        theme_void() +
        theme(
          legend.position = "left",
          legend.title.align = 0,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 0, lineheight = 1.5)
        )
    }
    
    if (col == "sequential") {
      breaks_test <- breaks[!breaks == Inf]
      breaks_test <- breaks_test[!breaks_test == -Inf]
      breaks_reverse <-
        abs(first(breaks_test)) < abs(last(breaks_test))
      
      if (breaks_reverse == TRUE) {
        direction_value = 1
        reverse_value = TRUE
      } else{
        direction_value = -1
        reverse_value = FALSE
      }
      
      if (n_labels == 1) {
        labels <- breaks_test
      } else {
        breaks_test[seq_along(breaks_test) %% 2 == 0] <- ""
        labels <- breaks_test
      }
      
      if (col_scale %in% c("viridis", "plasma", "cividis")) {
        p_map <- p_map +
          scale_fill_viridis_d(
            drop = FALSE,
            name = legend_title,
            direction = direction_value,
            option = col_scale,
            labels = unname(labels)
          )
      }
      
    } else {
      
      breaks_test <- breaks[!breaks == Inf]
      breaks_test <- breaks_test[!breaks_test == -Inf]
      
      if (n_labels == 1) {
        labels <- breaks_test
      } else {
        breaks_test[seq_along(breaks_test) %% 2 == 0] <- ""
        labels <- breaks_test
      }
      
      p_map <- p_map +
        scale_fill_gradientn(
          colours = warm_cool_gradient,
          # rescaler = ~ scales::rescale_mid(.x, mid = 0),
          super = ScaleDiscretised,
          name = legend_title,
          labels = unname(labels)
        )
        # colorspace::scale_fill_discrete_divergingx(
        #   palette = "RdBu",
        #   drop = FALSE,
        #   rev = TRUE,
        #   name = legend_title,
        #   labels = unname(labels)
        # )
    }
    
    
    
    if (!(is.null(dim_row) & is.null(dim_col))) {
      if (is.null(dim_col)) {
        dim_col <- "."
      }
      
      if (is.null(dim_row)) {
        dim_row <- "."
      }
      
      p_map <- p_map +
        facet_grid(as.formula(paste(dim_row, "~", dim_col)),
                   labeller = labeller(name = x_axis_labels),
                   switch = "y") +
        theme(strip.text.x.top = element_markdown(),
              strip.text.y.left = element_markdown())
      
    }
    
    if (!is.null(dim_wrap) & is.null(n_col)) {

      p_map <- p_map +
        facet_wrap(as.formula(paste("~", dim_wrap)))
    }
    

    if (!(is.null(dim_wrap) & is.null(n_col))) {
      if (dim_wrap == "name") {
        p_map <- p_map +
          facet_wrap(as.formula(paste("~", dim_wrap)),
                     labeller = labeller(name = x_axis_labels),
                     ncol = n_col) +
          theme(strip.text.x.top = element_markdown())
      } else{
        p_map <- p_map +
          facet_wrap(as.formula(paste("~", dim_wrap)), ncol = n_col) +
          theme(strip.text.x.top = element_markdown())
      }
    }
    
    p_map
    
  }

Maps

The following maps show the anomalies of each variable in 2023 as provided through the fCO2 product. Anomalies are determined based on the predicted value of a linear regression model fit to the available data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

2023 anomaly

pco2_product_map_annual_anomaly <-
  inner_join(
    biome_mask_print,
    pco2_product_map_annual_anomaly
  )

pco2_product_map_annual_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      dim_wrap = "product",
      n_col = 2
    )
  )
[[1]]

Version Author Date
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
fbba0a0 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[2]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
c6f967e jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
7c448f7 jens-daniel-mueller 2024-05-31
bf01e6c jens-daniel-mueller 2024-05-31
fbba0a0 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[3]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
c6f967e jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
7c448f7 jens-daniel-mueller 2024-05-31
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
fbba0a0 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[4]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
c6f967e jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
7c448f7 jens-daniel-mueller 2024-05-31
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
fbba0a0 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[5]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
c6f967e jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
7c448f7 jens-daniel-mueller 2024-05-31
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
fbba0a0 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[6]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
c6f967e jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
7c448f7 jens-daniel-mueller 2024-05-31
bf01e6c jens-daniel-mueller 2024-05-31
b754e95 jens-daniel-mueller 2024-05-28
fbba0a0 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[7]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
c6f967e jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
7c448f7 jens-daniel-mueller 2024-05-31
bf01e6c jens-daniel-mueller 2024-05-31
4d3ccb2 jens-daniel-mueller 2024-05-29
b754e95 jens-daniel-mueller 2024-05-28
fbba0a0 jens-daniel-mueller 2024-05-28
97eff6a jens-daniel-mueller 2024-05-25
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[8]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
a58162a jens-daniel-mueller 2024-07-11
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
c6f967e jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
7c448f7 jens-daniel-mueller 2024-05-31
bf01e6c jens-daniel-mueller 2024-05-31
4d3ccb2 jens-daniel-mueller 2024-05-29
b754e95 jens-daniel-mueller 2024-05-28
fbba0a0 jens-daniel-mueller 2024-05-28
e1e0ccb jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
e44a62b jens-daniel-mueller 2024-04-23
6709afa jens-daniel-mueller 2024-04-12
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
# plot_list <- 
# pco2_product_map_annual_anomaly %>%
#   filter(year == 2023,
#          product == "ETHZ-CESM",
#          name %in% c(
#            "fgco2",
#            "dfco2",
#            "kw_sol",
#            "temperature",
#            "salinity",
#            "sdissic",
#            "stalk",
#            "no3",
#            "mld",
#            "intpp",
#            "chl"
#          )) %>%
#   group_split(name) %>% 
#   # head(1) %>%
#   map(
#     ~ map +
#       geom_tile(data = .x,
#                 aes(lon, lat, fill = resid)) +
#       scale_fill_gradientn(
#         colours = warm_cool_gradient,
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks(.x %>% distinct(name))$i_legend_title,
#         limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
#         oob = squish
#       ) +
#       theme(legend.title = element_markdown(),
#             legend.justification = "left")
#   )


plot_list <- 
pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         product == "ETHZ-CESM",
         name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 14,
       height = 11,
       filename = "../output/map_anomaly_ETHZ-CESM.jpg")
plot_list <- 
pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         product == "FESOM-REcoM",
         name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 14,
       height = 11,
       filename = "../output/map_anomaly_FESOM-REcoM.jpg")

rm(plot_list)
pco2_product_map_annual_anomaly_ensemble <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  fgroup_by(name, lon, lat) %>%
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid),
    value_sd = fsd(value),
    value_mean = fmean(value),
    n = fnobs(resid)
  ) %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)

pco2_product_map_annual_anomaly_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_anomaly_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(
    resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
    resid_mean_coarse = fmean(resid_mean, na.rm = TRUE),
    value_sd_coarse = fmean(value_sd, na.rm = TRUE),
    value_mean_coarse = fmean(value_mean, na.rm = TRUE)
  ) %>% 
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_map_annual_anomaly_ensemble_uncertainty <-
  pco2_product_map_annual_anomaly_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )
[[1]]

Version Author Date
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

[[2]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

[[3]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16

[[4]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
plot_list <- pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>%
  filter(name %in% c("fgco2", "temperature")) %>% 
  group_split(name) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      legend_position = "bottom",
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )

ggsave(plot = wrap_plots(plot_list,
                         ncol = 2,
                         byrow = FALSE),
       width = 10,
       height = 3,
       filename = "../output/map_anomaly_ensemble_mean_pco2_products.jpg")


pco2_product_map_annual_anomaly_ensemble_uncertainty <-
  pco2_product_map_annual_anomaly_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(value_mean_coarse) < value_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")

pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>%
  filter(name %in% c("fgco2")) %>% 
  group_split(name) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>%
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "value_mean",
      legend_title = str_remove(
        labels_breaks(.x %>% distinct(name))$i_legend_title,
        " anom."),
      breaks = c(-Inf, seq(-4,4,1), Inf),
      n_labels = 2
    )
  )
[[1]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
6a96e1f jens-daniel-mueller 2024-08-26
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
ggsave(width = 5,
       height = 3,
       filename = "../output/map_absolute_ensemble_mean_pco2_products.jpg")




rm(pco2_product_map_annual_anomaly_ensemble_uncertainty)
pco2_product_map_annual_anomaly_ensemble_offset <-
left_join(
    pco2_product_map_annual_anomaly_ensemble,
    pco2_product_map_annual_anomaly %>% 
      filter(year == 2023,
             product %in% pco2_product_list)
  ) %>%
  mutate(`Anomaly offset` = resid - resid_mean) %>% 
  select(name, lon, lat, product, `Anomaly offset`)

pco2_product_map_annual_anomaly_ensemble_baseline <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    fit_mean = mean(fit),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)

pco2_product_map_annual_anomaly_ensemble_baseline <-
left_join(
    pco2_product_map_annual_anomaly_ensemble_baseline,
    pco2_product_map_annual_anomaly %>% 
      filter(year == 2023,
             product %in% pco2_product_list)
  ) %>%
  mutate(`Baseline offset` = fit - fit_mean) %>% 
  select(name, lon, lat, product, `Baseline offset`)

full_join(
  pco2_product_map_annual_anomaly_ensemble_offset,
  pco2_product_map_annual_anomaly_ensemble_baseline
) %>%
  pivot_longer(contains("offset"),
               names_to = "offset") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title =  paste(2023, "offset from ensemble mean")) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
        oob = squish
      ) +
      facet_grid(product ~ offset) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

rm(pco2_product_map_annual_anomaly_ensemble_offset,
   pco2_product_map_annual_anomaly_ensemble_baseline)

gc()
pco2_product_map_annual_anomaly_ensemble_gobm <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% gobm_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_range = max(resid) - min(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(gobm_product_list)) %>% 
  select(-n)


plot_list <- 
pco2_product_map_annual_anomaly_ensemble_gobm %>%
  filter(name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 2,
                         byrow = FALSE),
       width = 10,
       height = 16,
       filename = "../output/map_anomaly_ensemble_mean_gobm.jpg")

rm(plot_list,
   pco2_product_map_annual_anomaly_ensemble_gobm)

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3229036  172.5    7821332  417.8   7821332  417.8
Vcells 292269403 2229.9  601733777 4590.9 601704281 4590.7

Bivariate anomaly

bivariate_map <-
  pco2_product_map_annual_anomaly %>%
  filter(year == 2023, name %in% c("fgco2", "temperature")) %>%
  select(product, name, lon, lat, resid) %>%
  pivot_wider(names_from = name, values_from = resid) %>%
  drop_na()

dim_set <- 3


bivariate_map <-
  bivariate_map %>%
  mutate(
    temperature = cut(
      temperature,
      breaks = c(
        min(bivariate_map$temperature),
        0,
        0.3,
        max(bivariate_map$temperature)
      ),
      include.lowest = TRUE
    ),
    fgco2 = cut(
      fgco2,
      breaks = c(
        min(bivariate_map$fgco2),
        0,
        0.1,
        max(bivariate_map$fgco2)
      ),
      include.lowest = TRUE
    )
  )


bivariate_map <-
  bi_class(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile"
  )

bi_breaks <-
  bi_class_breaks(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile",
    dig_lab = 1,
    split = TRUE
  )

bivariate_map_raster <-
bivariate_map %>%
    relocate(lon, lat) %>%
    select(lon, lat, product, bi_class) %>%
    mutate(bi_class_numeric = as.character(as.numeric(as.factor(bi_class))))


bivariate_map_raster_values <- 
bivariate_map_raster %>% 
  distinct(bi_class, bi_class_numeric)

bivariate_map_raster <- rast(
  bivariate_map_raster %>%
    select(-bi_class) %>% 
    pivot_wider(names_from = product,
                values_from = bi_class_numeric),
    crs = "+proj=longlat"
)


bivariate_map_raster <- project(bivariate_map_raster, target_crs, method = "near")

bivariate_map_tibble <- bivariate_map_raster %>%
  as.data.frame(xy = TRUE, na.rm = FALSE) %>%
  as_tibble() %>%
  rename(lon = x, lat = y) %>%
  pivot_longer(-c(lon, lat),
               names_to = "product",
               values_to = "bi_class_numeric") %>% 
  drop_na()

bivariate_map_tibble <-
  right_join(
    bivariate_map_tibble,
    bivariate_map_raster_values %>%
      mutate(bi_class_numeric = as.numeric(bi_class_numeric))
  )


ggplot() +
  geom_raster(data = bivariate_map_tibble,
            aes(x = lon, y = lat, fill = bi_class)) +
  bi_scale_fill(pal = "DkBlue2", dim = dim_set, flip_axes = TRUE) +
  geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
  geom_sf(data = coastline_trans, linewidth = 0.3) +
  geom_sf(data = bbox_graticules_trans, linewidth = 0.5) +
  coord_sf(
    crs = target_crs,
    ylim = lat_lim,
    xlim = lon_lim,
    expand = FALSE
  ) +
  theme(
    axis.title = element_blank(),
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    panel.border = element_rect(colour = "transparent"),
    strip.background = element_blank(),
    legend.position = "none"
  ) +
  facet_wrap( ~ product, ncol = 2)

Version Author Date
4acb1fc jens-daniel-mueller 2024-09-05
c50054d jens-daniel-mueller 2024-08-29
681629f jens-daniel-mueller 2024-08-26
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
67956dd jens-daniel-mueller 2024-07-08
8cdfed7 jens-daniel-mueller 2024-06-21
478e699 jens-daniel-mueller 2024-06-14
bf01e6c jens-daniel-mueller 2024-05-31
b754e95 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
6709afa jens-daniel-mueller 2024-04-12
ggsave(
  width = 6,
  height = 5,
  dpi = 600,
  filename = "../output/map_anomaly_bivariate_all_products.jpg"
)


bi_breaks$bi_x <- bi_breaks$bi_x[-1]
bi_breaks$bi_x[1] <- paste0("-", bi_breaks$bi_x[1])

bi_breaks$bi_y <- bi_breaks$bi_y[-1]
bi_breaks$bi_y[1] <- paste0("-", bi_breaks$bi_y[1])


bi_legend(
  pal = "DkBlue2",
  xlab = labels_breaks("temperature")$i_legend_title,
  ylab = labels_breaks("fgco2")$i_legend_title,
  dim = dim_set,
  pad_width = 2,
  breaks = bi_breaks,
  arrows = FALSE,
  flip_axes = TRUE
) +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    axis.ticks = element_blank(),
    axis.text = element_text(size = 10)
  )

Version Author Date
4acb1fc jens-daniel-mueller 2024-09-05
c50054d jens-daniel-mueller 2024-08-29
681629f jens-daniel-mueller 2024-08-26
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
ba4aaac jens-daniel-mueller 2024-07-08
8cdfed7 jens-daniel-mueller 2024-06-21
478e699 jens-daniel-mueller 2024-06-14
bf01e6c jens-daniel-mueller 2024-05-31
b754e95 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
960912c jens-daniel-mueller 2024-05-16
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
6709afa jens-daniel-mueller 2024-04-12
ggsave(
  width = 4,
  height = 3,
  dpi = 600,
  filename = "../output/map_anomaly_bivariate_all_products_legend.jpg"
)
bivariate_map <- 
pco2_product_map_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2", "temperature")) %>%
  select(name, lon, lat, resid_mean) %>% 
  pivot_wider(names_from = name,
              values_from = resid_mean) %>% 
  drop_na()


dim_set <- 3

bivariate_map <-
  bivariate_map %>%
  mutate(
    temperature = cut(
      temperature,
      breaks = c(
        min(bivariate_map$temperature),
        0,
        0.3,
        max(bivariate_map$temperature)
      ),
      include.lowest = TRUE
    ),
    fgco2 = cut(
      fgco2,
      breaks = c(
        max(bivariate_map$fgco2),
        0.1,
        0,
        min(bivariate_map$fgco2)
      ),
      include.lowest = TRUE
    )
  )

bivariate_map <-
  bi_class(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile"
  )

bi_breaks <-
  bi_class_breaks(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile",
    dig_lab = 1,
    split = TRUE
  )

bivariate_map_raster <-
bivariate_map %>%
    relocate(lon, lat) %>%
    select(lon, lat, bi_class) %>%
    mutate(bi_class_numeric = as.character(as.numeric(as.factor(bi_class))))


bivariate_map_raster_values <- 
bivariate_map_raster %>% 
  distinct(bi_class, bi_class_numeric)

bivariate_map_raster <- rast(
  bivariate_map_raster %>%
    select(-bi_class),
    crs = "+proj=longlat"
)


bivariate_map_raster <- project(bivariate_map_raster, target_crs, method = "near")

bivariate_map_tibble <- bivariate_map_raster %>%
  as.data.frame(xy = TRUE, na.rm = FALSE) %>%
  as_tibble() %>%
  rename(lon = x, lat = y) %>%
  drop_na()

bivariate_map_tibble <-
  right_join(
    bivariate_map_tibble,
    bivariate_map_raster_values %>%
      mutate(bi_class_numeric = as.numeric(bi_class_numeric))
  )


ggplot() +
  geom_raster(data = bivariate_map_tibble,
            aes(x = lon, y = lat, fill = bi_class)) +
  bi_scale_fill(pal = "DkBlue2", dim = dim_set, flip_axes = TRUE) +
  geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
  geom_sf(data = coastline_trans, linewidth = 0.3) +
  geom_sf(data = bbox_graticules_trans, linewidth = 0.5) +
  coord_sf(
    crs = target_crs,
    ylim = lat_lim,
    xlim = lon_lim,
    expand = FALSE
  ) +
  theme(
    axis.title = element_blank(),
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    panel.border = element_rect(colour = "transparent"),
    strip.background = element_blank(),
    legend.position = "none"
  )

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
681629f jens-daniel-mueller 2024-08-26
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
478e699 jens-daniel-mueller 2024-06-14
ggsave(width = 5,
       height = 2.5,
       dpi = 600,
       filename = "../output/map_anomaly_bivariate_ensemble_mean_pco2_products.jpg")

bi_breaks$bi_x <- bi_breaks$bi_x[-1]
bi_breaks$bi_x[1] <- paste0("-", bi_breaks$bi_x[1])

bi_breaks$bi_y <- bi_breaks$bi_y[-1]
bi_breaks$bi_y[1] <- paste0("-", bi_breaks$bi_y[1])


bi_legend(
  pal = "DkBlue2",
  xlab = labels_breaks("temperature")$i_legend_title,
  ylab = labels_breaks("fgco2")$i_legend_title,
  dim = dim_set,
  pad_width = 2,
  breaks = bi_breaks,
  arrows = FALSE,
  flip_axes = TRUE
) +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    axis.ticks = element_blank(),
    axis.text = element_text(size = 10)
  )

Version Author Date
4acb1fc jens-daniel-mueller 2024-09-05
c50054d jens-daniel-mueller 2024-08-29
681629f jens-daniel-mueller 2024-08-26
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
ba4aaac jens-daniel-mueller 2024-07-08
aeca619 jens-daniel-mueller 2024-06-19
478e699 jens-daniel-mueller 2024-06-14
ggsave(width = 4,
       height = 3,
       dpi = 600,
       filename = "../output/map_anomaly_bivariate_ensemble_mean_pco2_products_legend.jpg")
pco2_product_zonal_annual_anomaly <-
pco2_product_hovmoeller_monthly_anomaly %>%
  filter(year == 2023) %>%
  group_by(product, name, lat) %>%
  summarise(resid = mean(resid)) %>%
  ungroup() 


pco2_product_zonal_annual_anomaly %>%
  ggplot(aes(resid, lat, col = product)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_path() +
  scale_color_manual(values = color_products) +
  facet_wrap( ~ name, scales = "free_x", ncol = 4)

Version Author Date
3bb8433 jens-daniel-mueller 2024-09-03
pco2_product_zonal_annual_anomaly_ensemble <- 
pco2_product_zonal_annual_anomaly %>%
  filter(product %in% pco2_product_list) %>% 
  group_by(lat, name) %>% 
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid)
  )

pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2_hov", "temperature")) %>%
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  # geom_ribbon(aes(xmin = resid_mean - resid_sd, xmax = resid_mean + resid_sd),
  #             alpha = 0.5) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.5) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.5) +
  scale_fill_manual(values = c(cold_color, warm_color)) +
  geom_path() +
  facet_grid(. ~ name,
             labeller = labeller(name = x_axis_labels),
             scales = "free_x",
             switch = "x") +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank(),
    legend.position = "none"
  )

Version Author Date
3bb8433 jens-daniel-mueller 2024-09-03
bi_pal("DkBlue2", preview = FALSE)
      1-1       2-1       3-1       1-2       2-2       3-2       1-3       2-3 
"#d3d3d3" "#97c5c5" "#52b6b6" "#c098b9" "#898ead" "#4a839f" "#ad5b9c" "#7c5592" 
      3-3 
"#434e87" 
# "#d3d3d3" "#97c5c5" "#52b6b6" "#c098b9" "#898ead" "#4a839f" "#ad5b9c" "#7c5592" "#434e87"

p_zonal_fgco2 <- 
pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2_hov")) %>%
  mutate(resid_mean = resid_mean * 1000) %>% 
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.9) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.9) +
  scale_fill_manual(values = c("#d3d3d3", "#52b6b6")) +
  geom_path() +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  scale_x_continuous(breaks = seq(-5,5,5),
                     name = str_replace(
                       labels_breaks("fgco2_hov")$i_legend_title,
                     "PgC", "TgC"
                     )) +
  theme_classic() +
  theme(
    legend.position = "none",
    axis.title.x = element_markdown(),
    axis.text.y = element_blank(),
    axis.ticks.y = element_blank(),
    axis.title.y = element_blank(),
    axis.line.y = element_blank()
  )


p_zonal_temperature <- 
pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("temperature")) %>%
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.9) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.9) +
  scale_fill_manual(values = c("#d3d3d3", "#ad5b9c")) +
  geom_path() +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  scale_x_continuous(breaks = seq(-0.6,0.6,0.3),
                     name = labels_breaks("temperature")$i_legend_title) +
  theme_classic() +
  theme(
    legend.position = "none",
    axis.title.x = element_markdown(),
    axis.title.y = element_text(angle = 0)
  )

p_zonal_temperature | p_zonal_fgco2

Version Author Date
4acb1fc jens-daniel-mueller 2024-09-05
3bb8433 jens-daniel-mueller 2024-09-03
ggsave(width = 2.8,
       height = 4.5,
       filename = "../output/zonal_mean_anomaly_pco2_product_ensemble_mean.jpg")
pco2_product_map_annual_slope %>%
  p_map_mdim_robinson(
    var = "slope",
    legend_title = "Slope FCO<sub>2</sub> anom. / SST anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup> °C<sup>-1</sup>)",
    breaks = c(-Inf, seq(-1, 1, 0.25), Inf),
    dim_wrap = "product",
    n_col = 2
  )

Version Author Date
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
8cdfed7 jens-daniel-mueller 2024-06-21
aeca619 jens-daniel-mueller 2024-06-19
ggsave(width = 7,
       height = 6,
       dpi = 600,
       filename = "../output/map_anomaly_correlation_all_products.jpg")

# map +
#   geom_tile(data = pco2_product_map_annual_slope, aes(lon, lat, fill = slope)) +
#   scale_fill_gradientn(
#     colours = warm_cool_gradient,
#     rescaler = ~ scales::rescale_mid(.x, mid = 0),
#     limits = c(
#       quantile(pco2_product_map_annual_slope$slope, .01),
#       quantile(pco2_product_map_annual_slope$slope, .99)
#     ),
#     oob = squish
#   ) +
#   facet_wrap( ~ product) +
#   guides(
#     fill = guide_colorbar(
#       barheight = unit(0.3, "cm"),
#       barwidth = unit(6, "cm"),
#       ticks = TRUE,
#       ticks.colour = "grey20",
#       frame.colour = "grey20",
#       label.position = "top",
#       direction = "horizontal"
#     )
#   ) +
#   theme(legend.title = element_markdown(), legend.position = "top") +
#   labs(title = "Correlation of historic annual flux and SST anomalies")
# 
# pco2_product_map_annual_slope_ensemble <-
#   pco2_product_map_annual_slope %>% 
#   filter(product %in% pco2_product_list) %>%
#   fgroup_by(lon, lat) %>%
#   fsummarise(
#     slope_sd = fsd(slope),
#     slope_mean = fmean(slope),
#     n = fnobs(slope)
#   ) %>%
#   filter(n == length(pco2_product_list)) %>% 
#   select(-n)
# 
# pco2_product_map_annual_slope_ensemble_coarse <-
#   m_grid_horizontal_coarse(pco2_product_map_annual_slope_ensemble) %>%
#   fgroup_by(lon_grid, lat_grid) %>%
#   fsummarise(
#     slope_sd_coarse = fmean(slope_sd, na.rm = TRUE),
#     slope_mean_coarse = fmean(slope_mean, na.rm = TRUE)
#   ) %>% 
#   rename(lon = lon_grid, lat = lat_grid)
# 
# pco2_product_map_annual_slope_ensemble <-
#   left_join(
#     pco2_product_map_annual_slope_ensemble,
#     pco2_product_map_annual_slope_ensemble_coarse
#   )
# 
# 
# map +
#   geom_tile(data = pco2_product_map_annual_slope_ensemble, 
#             aes(lon, lat, fill = slope_mean)) +
#   geom_point(
#     data = pco2_product_map_annual_slope_ensemble %>%
#       filter(abs(slope_mean_coarse) < slope_sd_coarse),
#     aes(lon, lat, shape = "Ensemble mean\n< StDev"),
#     col = "grey80",
#     size = 1
#   )+
#   scale_fill_gradientn(
#     colours = warm_cool_gradient,
#     rescaler = ~ scales::rescale_mid(.x, mid = 0),
#     limits = c(
#       quantile(pco2_product_map_annual_slope$slope,.01),
#       quantile(pco2_product_map_annual_slope$slope, .99)),
#     oob = squish,
#     name = paste0("Slope<br><br>",
#                   labels_breaks("fgco2"),
#                   " / <br><br>",
#                   labels_breaks("temperature"))
#   ) +
#   scale_shape(name = "") +
#   labs(title = "Correlation of historic annual flux and SST anomalies", 
#        subtitle = "fCO2 product ensemble mean") +
#   guides(
#     fill = guide_colorbar(
#       barheight = unit(0.3, "cm"),
#       barwidth = unit(6, "cm"),
#       ticks = TRUE,
#       ticks.colour = "grey20",
#       frame.colour = "grey20",
#       label.position = "top",
#       direction = "horizontal"
#     )
#   ) +
#   theme(legend.title = element_markdown(), 
#         legend.position = "top")

Monthly means

2023 anomaly

pco2_product_map_monthly_anomaly <-
  inner_join(
    biome_mask_print,
    pco2_product_map_monthly_anomaly
  )
pco2_product_map_monthly_anomaly %>%
  filter(name %in% name_core,
         year == 2023) %>%
  group_split(name) %>%
  head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      facet_grid(month ~ product) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )
pco2_product_map_monthly_anomaly_ensemble <-
  pco2_product_map_monthly_anomaly %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  fgroup_by(name, lon, lat, month) %>%
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid),
    n = fnobs(resid)
  ) %>%
  filter(n == length(pco2_product_list)) %>%
  select(-n)

pco2_product_map_monthly_anomaly_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_monthly_anomaly_ensemble) %>%
  fgroup_by(name, month, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_map_monthly_anomaly_ensemble <-
  left_join(
    pco2_product_map_monthly_anomaly_ensemble,
    pco2_product_map_monthly_anomaly_ensemble_coarse
  )


pco2_product_map_monthly_anomaly_ensemble %>%
  filter(name %in% name_core) %>%
  mutate(month = as.character(month),
         month = fct_inorder(month)) %>% 
  group_split(name) %>%
  head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid_mean",
      dim_wrap = "month",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )
[[1]]

Version Author Date
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
rm(
  pco2_product_map_monthly_anomaly_ensemble,
  pco2_product_map_monthly_anomaly_ensemble_coarse
)

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3305953  176.6    7821332  417.8   7821332  417.8
Vcells 268966959 2052.1  601733777 4590.9 601733337 4590.9

fCO2 decomposition

pco2_product_map_monthly_fCO2_decomposition <-
  inner_join(pco2_product_map_monthly_fCO2_decomposition,
             biome_mask_print)
pco2_product_map_monthly_fCO2_decomposition %>%
  filter(year == 2023) %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = .x$product) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("sfco2"),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

pco2_product_map_monthly_fCO2_decomposition %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat, month) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      # geom_point(
      #   data = .x %>% filter(abs(resid_mean) < resid_sd),
      #   aes(lon, lat, shape = "Ensemble mean\n< StDev"),
      #   col = "grey"
      # ) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("sfco2"),,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      scale_shape_manual(values = 46, name = "") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )
pco2_product_map_annual_fCO2_decomposition <-
  pco2_product_map_monthly_fCO2_decomposition %>% 
  select(product, year, lat, lon, name, resid) %>% 
  fgroup_by(product, year, lat, lon, name) %>% 
  fmean()

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3270864  174.7    7821332  417.8   7821332  417.8
Vcells 243554743 1858.2  601733777 4590.9 601733337 4590.9
pco2_product_map_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  select(-year) %>% 
  relocate(lon, lat) %>% 
  # mutate(name = str_remove(name, "sfco2_")) %>%
  p_map_mdim_robinson(
    var = "resid",
    dim_col = "name",
    dim_row = "product",
    legend_title = labels_breaks("sfco2")$i_legend_title,
    breaks = 2 * (labels_breaks("sfco2")$i_breaks),
    n_labels = 2
  )

Version Author Date
681629f jens-daniel-mueller 2024-08-26
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
b754e95 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
a29d870 jens-daniel-mueller 2024-05-16
pco2_product_map_annual_fCO2_decomposition_ensemble <-
  pco2_product_map_annual_fCO2_decomposition %>%
  filter(product %in% pco2_product_list, year == 2023) %>%
  group_by(name, lon, lat) %>%
  summarize(resid_sd = sd(resid),
            resid_mean = mean(resid),
            n = n()) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>%
  select(-n)


pco2_product_map_annual_fCO2_decomposition_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_fCO2_decomposition_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)



pco2_product_map_annual_fCO2_decomposition_ensemble_uncertainty <-
  pco2_product_map_annual_fCO2_decomposition_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_fCO2_decomposition_ensemble %>%
  select(lon, lat, name, resid_mean) %>% 
  mutate(name = fct_relevel(name,
                            c("sfco2_therm", "sfco2_nontherm"))) %>% 
  p_map_mdim_robinson(
    df_uncertainty = pco2_product_map_annual_fCO2_decomposition_ensemble_uncertainty,
    var = "resid_mean",
    legend_title = labels_breaks("sfco2")$i_legend_title,
    breaks = 2*(labels_breaks("sfco2")$i_breaks),
    dim_wrap = "name",
    n_col = 1,
    n_labels = 2
  )

Version Author Date
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
8cdfed7 jens-daniel-mueller 2024-06-21
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
1eefab2 jens-daniel-mueller 2024-05-21
a29d870 jens-daniel-mueller 2024-05-16
ggsave(width = 5,
       height = 7,
       dpi = 600,
       filename = "../output/map_anomaly_fco2_decomposition_ensemble_mean_pco2_products.jpg")

Flux attribution

pco2_product_map_monthly_flux_attribution <-
  inner_join(pco2_product_map_monthly_flux_attribution, biome_mask_print)
# pco2_product_map_monthly_flux_attribution <-
#   flux_attribution(pco2_product_map_monthly_anomaly,
#                    year, month, lon, lat)

pco2_product_map_monthly_flux_attribution %>%
  filter(year == 2023) %>% 
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(subtitle = .x$product) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown(), 
            legend.position = "bottom") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top",
            strip.text.x.top = element_markdown())
  )



pco2_product_map_monthly_flux_attribution %>%
  filter(year == 2023) %>% 
  drop_na() %>% 
  filter(product %in% pco2_product_list) %>%
  group_by(name, lon, lat, month) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      # geom_point(data = .x %>% filter(abs(resid_mean) < resid_sd),
      #            aes(lon, lat, shape = "Ensemble mean\n< StDev"))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      )+
      scale_shape_manual(values = 46, name = "") +
      theme(legend.title = element_markdown(),
            legend.position = "bottom") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.title = element_markdown(),
        legend.position = "top",
        strip.text.x.top = element_markdown()
      )
  )
pco2_product_map_annual_flux_attribution <-
  pco2_product_map_monthly_flux_attribution %>% 
  group_by(product, year, lat, lon, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup()

pco2_product_map_annual_flux_attribution %>%
  filter(year == 2023) %>%
  select(-year) %>% 
  relocate(lon, lat) %>% 
  # mutate(name = str_remove_all(name, "_")) %>%
  p_map_mdim_robinson(
    var = "resid",
    dim_row = "product",
    dim_col = "name",
    legend_title = labels_breaks("fgco2")$i_legend_title,
    breaks = labels_breaks("fgco2")$i_breaks,
    n_labels = 2
  )

Version Author Date
681629f jens-daniel-mueller 2024-08-26
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
acaac5f jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
pco2_product_map_annual_flux_attribution_ensemble <-
pco2_product_map_annual_flux_attribution %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  drop_na()

pco2_product_map_annual_flux_attribution_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_flux_attribution_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)



pco2_product_map_annual_flux_attribution_ensemble_uncertainty <-
  pco2_product_map_annual_flux_attribution_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_flux_attribution_ensemble %>%
  select(lon, lat, name, resid_mean) %>% 
  p_map_mdim_robinson(
    df_uncertainty = pco2_product_map_annual_flux_attribution_ensemble_uncertainty,
    var = "resid_mean",
    legend_title = labels_breaks("fgco2")$i_legend_title,
    breaks = labels_breaks("fgco2")$i_breaks,
    dim_wrap = "name",
    n_col = 1,
    n_labels = 2
  )

Version Author Date
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
2f165ec jens-daniel-mueller 2024-07-23
4a437fb jens-daniel-mueller 2024-07-09
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
8cdfed7 jens-daniel-mueller 2024-06-21
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
bf01e6c jens-daniel-mueller 2024-05-31
acaac5f jens-daniel-mueller 2024-05-28
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
1eefab2 jens-daniel-mueller 2024-05-21
a29d870 jens-daniel-mueller 2024-05-16
dbc1fc6 jens-daniel-mueller 2024-05-16
ggsave(width = 5,
       height = 7,
       dpi = 600,
       filename = "../output/map_anomaly_flux_attribution_ensemble_mean_pco2_products.jpg")

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Hovmoeller plots are presented as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Monthly means

Anomalies

pco2_product_hovmoeller_monthly_anomaly %>%
  filter(name %in% name_core) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid,.01),quantile(.x$resid,.99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap(~ product, ncol = 1)
  )
pco2_product_hovmoeller_monthly_anomaly_ensemble <-
  pco2_product_hovmoeller_monthly_anomaly %>% 
  group_by(name, decimal, lat) %>%
  summarize(
    resid_range = max(resid) - min(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n > 1)
  

pco2_product_hovmoeller_monthly_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid_mean)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap( ~ product, ncol = 1)
  )
left_join(
    pco2_product_hovmoeller_monthly_anomaly_ensemble,
    pco2_product_hovmoeller_monthly_anomaly
  ) %>%
  mutate(resid_offset = resid - resid_mean) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid_offset)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0)+
      labs(title = "Monthly offset from ensemble mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap( ~ product, ncol = 1)
  )

Regional means and integrals

The following plots show biome-, super biome- or global- averaged/integrated values of each variable as provided through the fCO2 product, represented here as the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Anomalies are presented relative to the predicted annual mean of each year, hence preserving the seasonality.

Annual anomalies

pco2_product_biome_annual_anomaly_ensemble <-
  pco2_product_biome_annual_anomaly %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome) %>%
  summarise(resid_sd = sd(resid),
            resid = mean(resid),
            value = mean(value),
            fit = mean(fit)) %>%
  ungroup()


lm_fgco2_sst <- pco2_product_biome_annual_anomaly %>%
  filter(
    name %in% c("fgco2_int", "temperature"),
    biome == "Global non-polar",
    year != 2023,
    product %in% pco2_product_list
  ) %>%
  select(year, product, name, resid) %>%
  pivot_wider(values_from = resid) %>%
  nest(data = -product) %>%
  mutate(fit = map(data, ~ flm(
    formula = fgco2_int ~ temperature, data = .x
  )))

lm_fgco2_sst <-
  left_join(
    lm_fgco2_sst %>%
      unnest_wider(fit) %>%
      select(product, intercept = `(Intercept)`, slope = temperature) %>%
      mutate(intercept = as.vector(intercept), slope = as.vector(slope)),
    pco2_product_biome_annual_anomaly %>%
      filter(
        name %in% c("temperature"),
        biome == "Global non-polar",
        year == 2023,
        product %in% pco2_product_list
      ) %>%
      select(product, name, resid) %>%
      pivot_wider(values_from = resid)
  ) %>%
  mutate(resid = intercept + temperature * slope)


lm_fgco2_sst
# A tibble: 4 × 5
  product       intercept  slope temperature   resid
  <fct>             <dbl>  <dbl>       <dbl>   <dbl>
1 CMEMS         -1.27e-14 -0.612       0.191 -0.117 
2 fCO2-Residual  1.90e-15 -0.739       0.203 -0.150 
3 OceanSODAv2   -4.62e-15 -0.385       0.225 -0.0866
4 SOM-FFN        1.75e-16 -0.432       0.233 -0.101 
lm_fgco2_sst %>%
  mutate(across(c(slope, temperature, resid), ~ round(.x, 2)),
         across(c(intercept), ~ signif(.x, 2))) %>%
  write_csv("../output/lm_fgco2_sst.csv")

lm_fgco2_sst <-
lm_fgco2_sst %>% 
  summarise(resid_sd = sd(resid),
            resid_mean = mean(resid),
            temperature_sd = sd(temperature),
            temperature_mean = mean(temperature))



pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst <-
  bind_cols(
    lm_fgco2_sst,
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name %in% c("fgco2_int"), biome == "Global non-polar",
             year == 2023) %>%
      select(year, name, fit)
  ) %>%
  mutate(fgco2_predict = resid_mean + fit) %>%
  select(-fit)

nino_sst %>% 
  filter(year >= 1990) %>% 
  ggplot(aes(year + month/12, resid)) +
  geom_hline(yintercept = 0.5) +
  geom_path() +
  geom_path(data = . %>% 
              group_by(year) %>% 
              mutate(resid = mean(resid)) %>% 
              ungroup())

bind_rows(
  pco2_product_biome_annual_anomaly_ensemble,
  pco2_product_biome_annual_anomaly_ensemble %>%
    filter(year == max(year)) %>%
    mutate(year = year + 1) %>%
    select(-c(resid, resid_sd))
) %>%
  filter(name %in% c("fgco2_int", "temperature"), biome == "Global non-polar") %>%
  mutate(name = fct_rev(as.factor(name))) %>%
  ggplot() +
  geom_path(
    data = pco2_product_biome_monthly_anomaly %>%
      filter(
        product %in% pco2_product_list,
        name %in% c("fgco2_int", "temperature"),
        biome == "Global non-polar"
      ) %>%
      group_by(year, month, name, biome) %>%
      summarise(value = mean(value)) %>%
      ungroup(),
    aes(year + month / 12, value),
    col = "grey90"
  ) +

  geom_rect(
    data = pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst %>%
      filter(year %in% c(2023)),
    aes(xmin = year, xmax = year + 1, ymin = fgco2_predict - resid_sd,
        ymax = fgco2_predict + resid_sd),
    fill = trend_color, col = trend_color
  ) +
  geom_text(
    data = pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst %>%
      filter(year %in% c(2023)),
    aes(x = year + 1, y = fgco2_predict - 0.2, label = "Expected 2023 anomaly"),
    hjust = 1,
    fontface = "bold",
    col = trend_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "temperature"),
    aes(x = year, y = 21.95, label = "Warm"),
    hjust = 0,
    fontface = "bold",
    col = warm_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "temperature"),
    aes(x = year, y = 21.45, label = "Cold"),
    hjust = 0,
    fontface = "bold",
    col = cold_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "fgco2_int"),
    aes(x = year, y = -0.85, label = "Weak carbon sink"),
    hjust = 0,
    fontface = "bold",
    col = warm_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "fgco2_int"),
    aes(x = year, y = -2.1, label = "Strong carbon sink"),
    hjust = 0,
    fontface = "bold",
    col = cold_color
  ) +
  geom_text(
    data = . %>%
      filter(year %in% c(1997, 2015, 2023), name == "fgco2_int"),
    aes(
      x = year + 0.5,
      y = -2.6,
      label = "EN"
    ), size = 3, fontface = "italic", col = "grey20") +
  geom_text(
    data = . %>%
      filter(year %in% c(1997, 2015, 2023), name == "temperature"),
    aes(
      x = year + 0.5,
      y = 21.45,
      label = "EN"
    ), size = 3, fontface = "italic", col = "grey20") +
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.7
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  geom_step(aes(year, value, col = "Observed")) +
  geom_linerange(aes(
    x = year + 0.5,
    ymin = value - resid_sd,
    ymax = value + resid_sd,
    linetype = "Product SD"
  )) +
  scale_color_manual(values = c("grey40", "grey10"), name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  scale_linetype(name = "Anomaly uncertainty") +
  guides(
    color = guide_legend(order = 1),
    fill = guide_legend(order = 2),
    linetype = guide_legend(order = 3)
  ) +
  scale_x_continuous(limits = c(1989.5, 2024.8), expand = c(0, 0)) +
  facet_wrap(
    . ~ name,
    scales = "free_y",
    strip.position = "left",
    labeller = labeller(name = x_axis_labels_abs)
    # switch = "y"
  )+
  labs(x = "Year") +
  theme(
    axis.title.y = element_blank(),
    axis.title.x = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "none",
    legend.direction = "vertical"
  )

ggsave(width = 10,
       height = 2,
       dpi = 600,
       filename = "../output/timeseries_ensemble_mean_pco2_products.jpg")

bind_rows(
  pco2_product_biome_annual_anomaly,
  pco2_product_biome_annual_anomaly %>%
    filter(year == max(year)) %>%
    mutate(year = year + 1) %>% 
    select(-c(resid))
) %>% 
  filter(name %in% c("fgco2_int", "temperature"),
         biome == "Global non-polar") %>%
  ggplot() +
  geom_path(
    data = pco2_product_biome_monthly_anomaly %>%
      filter(name %in% c("fgco2_int", "temperature"),
             biome == "Global non-polar"),
    aes(year + month / 12, value),
    col = "grey90"
  )+
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.5
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  geom_step(aes(year, value, col = "Observed")) +
  scale_color_manual(values = c("grey40", "grey10"),
                     name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  guides(
    color = guide_legend(order = 1),
    fill = guide_legend(order = 2)
  ) +
  scale_x_continuous(limits = c(1989.5,2024.5), expand = c(0,0),
                     breaks = c(1990,2010)) +
  facet_grid(
    name ~ product,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    axis.title = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "none",
    legend.direction = "vertical"
  )

ggsave(width = 8,
       height = 3,
       dpi = 600,
       filename = "../output/timeseries_all_products.jpg")


bind_rows(
  pco2_product_biome_monthly_anomaly,
  pco2_product_biome_monthly_anomaly %>%
    filter(year == max(year),
           month == 12) %>%
    mutate(month = month + 1)
) %>%
  mutate(year = year + month/12) %>% 
  filter(name %in% c("fgco2_int", "temperature"),
         product == "OceanSODAv2",
         biome == "Global non-polar",
         year >= 2010) %>%
  ggplot() +
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1/12,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.5
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  scale_color_manual(values = c("grey40", "grey10"),
                     name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  guides(color = guide_legend(order = 1),
         fill = guide_legend(order = 2))+
  facet_grid(
    name ~ .,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  coord_cartesian(expand = 0) +
  theme(
    axis.title = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "top",
    legend.direction = "vertical"
  )

pco2_product_biome_annual_anomaly %>%
  filter(year == 2023,
         name %in% c("fgco2", "fgco2_int", "dfco2",
                     "kw_sol", "temperature",
                     "no3", "mld", "intpp", "chl")) %>%
  mutate(region = case_when(biome == "Global non-polar" ~ "Global non-polar",
                            # biome %in% super_biomes ~ "Super biomes",
                            TRUE ~ "Biomes"),
         region = factor(region, levels = c("Global non-polar", "Biomes"))) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes(biome, value, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(biome, fit, group = product, col = paste0(2023,"\nlinear\nprediction")),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title,
           title = "Absolute") +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
            axis.title.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[2]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[3]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[4]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[5]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[6]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[7]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
231f7cd jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[8]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
2a28b07 jens-daniel-mueller 2024-07-22
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
7b6f27c jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
7f9c687 jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
full_join(
  pco2_product_biome_annual_anomaly %>%
    filter(year != 2023,
           name %in% name_core) %>%
    group_by(product, name, biome) %>% 
    summarise(resid_sd = sd(resid)) %>% 
    ungroup(),
  pco2_product_biome_annual_anomaly %>%
    filter(year == 2023,
           name %in% name_core)) %>%
  mutate(
    region = case_when(
      biome == "Global non-polar" ~ "Global non-polar",
      TRUE ~ "Biomes"
    ),
    region = factor(region, levels = c("Global non-polar", "Biomes"))
  ) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes(biome, value - fit, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(biome, resid_sd * sign(value - fit), 
                   group = product, col = paste0("Anomaly SD\nexcl.",2023)),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title,
           title = "Anomalies") +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
            axis.title.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[2]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[3]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[4]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[5]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[6]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[7]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
231f7cd jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[8]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
4d3ccb2 jens-daniel-mueller 2024-05-29
7b6f27c jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
7f9c687 jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

[[9]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
4d3ccb2 jens-daniel-mueller 2024-05-29
7b6f27c jens-daniel-mueller 2024-05-27
e1e0ccb jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
e44a62b jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05

Super regions

pco2_product_biome_annual_anomaly_super_regions <-
  full_join(
    pco2_product_biome_annual_anomaly %>% 
      filter(biome != "Global non-polar"),
    biome_mask %>%
      mutate(area = earth_surf(lat, lon)) %>%
      group_by(biome) %>%
      summarise(area = sum(area)) %>%
      ungroup()
  ) %>% 
  pivot_longer(c(value,resid,fit),
               names_to = "estimate") %>% 
  pivot_wider()

pco2_product_biome_annual_anomaly_super_regions <-
bind_rows(
  pco2_product_biome_annual_anomaly_super_regions %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Global"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(!str_detect(biome, "SO-ICE|SO-SPSS|Arctic")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Global non-polar"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "NA-|NP-")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "NH extratropics"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "NA-")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "North Atlantic"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "NP-")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "North Pacific"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "PEQU|AEQU|Equ")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Tropics"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "SA-|SP-|Southern|SO-STSS")) %>%
    select(-biome) %>%
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int, 
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "SH extratropics")) %>%
  mutate(region = fct_inorder(region)) %>% 
  pivot_longer(-c(product, year, region, estimate)) %>% 
  pivot_wider(names_from = estimate)

pco2_product_biome_annual_anomaly_super_regions %>% 
  filter(year == 2023,
         name %in% c("fgco2", "fgco2_int", "dfco2", "temperature")) %>%    
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_hline(yintercept = 0) +
      geom_col(aes(region, value, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(region, fit, group = product, col = paste0(2023,"\nlinear\nprediction")),
               position = "dodge2",
               fill = "transparent") +
      labs(y = str_remove(labels_breaks(unique(.x$name))$i_legend_title, " anom.")) +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_blank(),
            axis.title.x = element_blank(),
            axis.ticks.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
0f5b472 jens-daniel-mueller 2024-08-27
08ca8c7 jens-daniel-mueller 2024-08-27
d82bd91 jens-daniel-mueller 2024-08-27
6a96e1f jens-daniel-mueller 2024-08-26
c62d92d jens-daniel-mueller 2024-08-23
4897f6e jens-daniel-mueller 2024-07-08
ba4aaac jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
dd97823 jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
7ad8576 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
4be90dd jens-daniel-mueller 2024-05-27
7013182 jens-daniel-mueller 2024-05-27

[[2]]

Version Author Date
0f5b472 jens-daniel-mueller 2024-08-27
08ca8c7 jens-daniel-mueller 2024-08-27
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
7ad8576 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
4be90dd jens-daniel-mueller 2024-05-27
7013182 jens-daniel-mueller 2024-05-27

[[3]]

Version Author Date
0f5b472 jens-daniel-mueller 2024-08-27
08ca8c7 jens-daniel-mueller 2024-08-27
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
7ad8576 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
4be90dd jens-daniel-mueller 2024-05-27
7013182 jens-daniel-mueller 2024-05-27

[[4]]

Version Author Date
0f5b472 jens-daniel-mueller 2024-08-27
08ca8c7 jens-daniel-mueller 2024-08-27
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
7ad8576 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
4be90dd jens-daniel-mueller 2024-05-27
7013182 jens-daniel-mueller 2024-05-27
full_join(pco2_product_biome_annual_anomaly_super_regions %>%
  group_by(product, name, region) %>%
  summarise(resid_sd = sd(resid, na.rm = TRUE)) %>%
  ungroup(),
pco2_product_biome_annual_anomaly_super_regions %>%  
  filter(year == 2023)) %>% 
  filter(name %in% c("fgco2", "fgco2_int", "dfco2", "temperature")) %>%    
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_hline(yintercept = 0) +
      geom_col(aes(region, resid, fill = product),
               position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(region, resid_sd * sign(value - fit), 
                   group = product, col = paste0("Anomaly SD\nexcl.",2023)),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title) +
      scale_color_grey() +
      facet_grid(. ~ region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_blank(),
            axis.title.x = element_blank(),
            axis.ticks.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
0f5b472 jens-daniel-mueller 2024-08-27
08ca8c7 jens-daniel-mueller 2024-08-27
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
7ad8576 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
4be90dd jens-daniel-mueller 2024-05-27
7013182 jens-daniel-mueller 2024-05-27

[[2]]

Version Author Date
0f5b472 jens-daniel-mueller 2024-08-27
08ca8c7 jens-daniel-mueller 2024-08-27
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
7ad8576 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
4be90dd jens-daniel-mueller 2024-05-27
7013182 jens-daniel-mueller 2024-05-27

[[3]]

Version Author Date
0f5b472 jens-daniel-mueller 2024-08-27
08ca8c7 jens-daniel-mueller 2024-08-27
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
7ad8576 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
4be90dd jens-daniel-mueller 2024-05-27
7013182 jens-daniel-mueller 2024-05-27

[[4]]

Version Author Date
0f5b472 jens-daniel-mueller 2024-08-27
08ca8c7 jens-daniel-mueller 2024-08-27
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
7ad8576 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
4be90dd jens-daniel-mueller 2024-05-27
7013182 jens-daniel-mueller 2024-05-27
pco2_product_biome_annual_anomaly_super_regions <-
  bind_rows(
    pco2_product_biome_annual_anomaly_super_regions %>%
      rename(biome = region),
    pco2_product_biome_annual_anomaly %>% 
      filter(biome != "Global non-polar")
  ) %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome) %>%
  summarise(
    resid_sd = sd(resid),
    resid = mean(resid),
    value_sd = sd(value),
    value = mean(value)
  ) %>%
  ungroup()


pco2_product_biome_annual_anomaly_super_regions <-
  pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("temperature", "fgco2", "fgco2_int"))

pco2_product_biome_annual_anomaly_super_regions %>%
  filter(year == 2023) %>%
  mutate(
    resid = paste(ifelse(
      resid > 0, paste0("+", round(resid, 2)), round(resid, 2)
    ), round(resid_sd, 2), sep = "±"),
    value = paste(ifelse(
      value > 0, paste0("+", round(value, 2)), round(value, 2)
    ), round(value_sd, 2), sep = "±")
  ) %>%
  select(-c(contains("_sd"), year)) %>%
  pivot_wider(values_from = c(resid, value)) %>%
  relocate(
    biome,
    value_temperature,
    resid_temperature,
    value_fgco2_int,
    resid_fgco2_int,
    value_fgco2,
    resid_fgco2
  ) %>%
  arrange(match(
    biome,
    c(
      "NA-SPSS",
      "NA-STPS",
      "NA-STSS",
            "North Atlantic",
            "NP-SPSS",
      "NP-STPS",
      "NP-STSS",
      "North Pacific",
      "NH extratropics",
      "PEQU-E",
      "PEQU-W",
      "AEQU",
      "Equatorial Indian",
      "Tropics",
      "SA-STPS",
      "SP-STPS",
      "Southern Indian",
      "SO-STSS",
      "SH extratropics",
      "Global non-polar",
      "SO-SPSS",
      "SO-ICE",
      "Arctic",
      "Global"
    )
  )) %>% 
  write_csv("../output/biome_anomaly_ensemble_mean_pco2_products.csv")
pco2_product_biome_annual_anomaly_merged <-
full_join(region_biomes,
          pco2_product_biome_annual_anomaly) %>%
  mutate(region = case_when(biome == "Global non-polar" ~ "Global\nnon-polar",
                            region == "atlantic" ~ "Atlantic",
                            region == "pacific" ~ "Pacific",
                            region == "indian" ~ "Indian Ocean",
                            TRUE ~ region),
         region = fct_rev(fct_inorder(region))) %>% 
  mutate(
    latitude = case_when(
      biome == "Global non-polar" ~ "Global\nnon-polar",
      biome %in% c(
        "NA-SPSS",
        "NA-STSS",
        "NA-STPS",
        "NP-SPSS",
        "NP-STSS",
        "NP-STPS"
      ) ~ "NH extratropics",
      biome %in% c(
        "Equatorial Indian",
        "PEQU-W",
        "PEQU-E",
        "AEQU"
      ) ~ "Tropics",
      biome %in% c("SA-STPS", "SP-STPS", "Southern Indian", "SO-STSS") ~ "SH extratropics",
      biome %in% c("SO-SPSS", "SO-ICE") ~ "SH polar",
      biome %in% c("Arctic") ~ "NH polar",
      TRUE ~ "other"
    ),
    latitude = fct_relevel(latitude, c("Global\nnon-polar",
                                       "NH polar",
                                       "NH extratropics",
                                       "Tropics",
                                       "SH extratropics",
                                       "SH polar"))) %>% 
  mutate(basin = case_when(
    biome == "Global non-polar" ~ "",
    str_detect(biome, "NA-|SA-|AEQU") ~ "Atlantic",
    str_detect(biome, "NP-|SP-") ~ "Pacific",
    str_detect(biome, "Indian") ~ "Indian",
    str_detect(biome, "SO-") ~ "Southern\nOcean",
    str_detect(biome, "Arctic") ~ "Arctic",
    biome == "PEQU-E" ~ "Pacific-E",
    biome == "PEQU-W" ~ "Pacific-W",
    TRUE ~ "other")) %>% 
  mutate(biome_class = case_when(
    str_detect(biome, "SPSS") ~ "Subpolar\nseasonally\nstratified\n(SPSS)",
    str_detect(biome, "STSS") ~ "Subtropical\nseasonally\nstratified\n(STSS)",
    str_detect(biome, "STPS|Southern Indian") ~ "Subtropical\npermanently\nstratified\n(STPS)",
    str_detect(biome, "Arctic|ICE") ~ "Ice",
    TRUE ~ ""),
    biome_class = fct_relevel(biome_class, 
                              "Subtropical\nseasonally\nstratified\n(STSS)", 
                              after = 2)) %>% 
  filter(year == 2023,
         name %in% c("temperature", "fgco2", "fgco2_int"))

pco2_product_biome_annual_anomaly_merged_ensemble <- 
pco2_product_biome_annual_anomaly_merged %>% 
  filter(product %in% pco2_product_list) %>% 
  group_by(name, biome, basin, region, latitude, biome_class) %>%
  summarise(resid_sd = sd(resid),
            resid = mean(resid))

pco2_product_biome_annual_anomaly_merged_ensemble %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
name biome basin region latitude biome_class resid_sd resid
fgco2 AEQU Atlantic Atlantic Tropics 0.1277725 -0.1073872
fgco2 Arctic Arctic arctic NH polar Ice 0.1218973 0.2860942
fgco2 Equatorial Indian Indian Indian Ocean Tropics 0.0811651 -0.0242599
fgco2 Global non-polar Global non-polar Global non-polar 0.0810832 0.0465589
fgco2 NA-SPSS Atlantic Atlantic NH extratropics Subpolar seasonally stratified (SPSS) 0.0820582 0.1823648
fgco2 NA-STPS Atlantic Atlantic NH extratropics Subtropical permanently stratified (STPS) 0.0306792 0.1359820
fgco2 NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS) 0.1038162 0.1227338
fgco2 NP-SPSS Pacific Pacific NH extratropics Subpolar seasonally stratified (SPSS) 0.2998148 0.2031217
fgco2 NP-STPS Pacific Pacific NH extratropics Subtropical permanently stratified (STPS) 0.1258440 0.0990390
fgco2 NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS) 0.1121846 0.2206666
fgco2 PEQU-E Pacific-E Pacific Tropics 0.1349176 -0.3132277
fgco2 PEQU-W Pacific-W Pacific Tropics 0.0335235 0.0539867
fgco2 SA-STPS Atlantic Atlantic SH extratropics Subtropical permanently stratified (STPS) 0.0616408 -0.0603114
fgco2 SO-ICE Southern Ocean southern SH polar Ice 0.1971660 -0.0503321
fgco2 SO-SPSS Southern Ocean southern SH polar Subpolar seasonally stratified (SPSS) 0.3781589 -0.1670718
fgco2 SO-STSS Southern Ocean southern SH extratropics Subtropical seasonally stratified (STSS) 0.1416620 0.0176299
fgco2 SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STPS) 0.1410510 0.0566787
fgco2 Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STPS) 0.1052116 0.1269398
fgco2_int AEQU Atlantic Atlantic Tropics 0.0128727 -0.0108902
fgco2_int Arctic Arctic arctic NH polar Ice 0.0183644 0.0328425
fgco2_int Equatorial Indian Indian Indian Ocean Tropics 0.0262191 -0.0076427
fgco2_int Global non-polar Global non-polar Global non-polar 0.2753267 0.1593786
fgco2_int NA-SPSS Atlantic Atlantic NH extratropics Subpolar seasonally stratified (SPSS) 0.0085618 0.0200128
fgco2_int NA-STPS Atlantic Atlantic NH extratropics Subtropical permanently stratified (STPS) 0.0086391 0.0366133
fgco2_int NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS) 0.0076904 0.0089896
fgco2_int NP-SPSS Pacific Pacific NH extratropics Subpolar seasonally stratified (SPSS) 0.0480354 0.0329081
fgco2_int NP-STPS Pacific Pacific NH extratropics Subtropical permanently stratified (STPS) 0.0648094 0.0513067
fgco2_int NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS) 0.0104441 0.0211142
fgco2_int PEQU-E Pacific-E Pacific Tropics 0.0244429 -0.0568594
fgco2_int PEQU-W Pacific-W Pacific Tropics 0.0051078 0.0084888
fgco2_int SA-STPS Atlantic Atlantic SH extratropics Subtropical permanently stratified (STPS) 0.0142388 -0.0140380
fgco2_int SO-ICE Southern Ocean southern SH polar Ice 0.0429179 -0.0113393
fgco2_int SO-SPSS Southern Ocean southern SH polar Subpolar seasonally stratified (SPSS) 0.1401301 -0.0620249
fgco2_int SO-STSS Southern Ocean southern SH extratropics Subtropical seasonally stratified (STSS) 0.0493971 0.0060158
fgco2_int SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STPS) 0.0926202 0.0372483
fgco2_int Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STPS) 0.0213909 0.0261113
temperature AEQU Atlantic Atlantic Tropics 0.0757248 0.2335304
temperature Arctic Arctic arctic NH polar Ice 0.0856725 -0.0715219
temperature Equatorial Indian Indian Indian Ocean Tropics 0.0572257 0.0140388
temperature Global non-polar Global non-polar Global non-polar 0.0194881 0.2131626
temperature NA-SPSS Atlantic Atlantic NH extratropics Subpolar seasonally stratified (SPSS) 0.0468549 0.1262277
temperature NA-STPS Atlantic Atlantic NH extratropics Subtropical permanently stratified (STPS) 0.0451547 0.4822180
temperature NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS) 0.0287486 0.2492396
temperature NP-SPSS Pacific Pacific NH extratropics Subpolar seasonally stratified (SPSS) 0.0349335 0.3692734
temperature NP-STPS Pacific Pacific NH extratropics Subtropical permanently stratified (STPS) 0.0280210 -0.0030638
temperature NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS) 0.0549194 0.4250527
temperature PEQU-E Pacific-E Pacific Tropics 0.0823128 1.2148275
temperature PEQU-W Pacific-W Pacific Tropics 0.0315601 0.0408612
temperature SA-STPS Atlantic Atlantic SH extratropics Subtropical permanently stratified (STPS) 0.0380908 0.1071125
temperature SO-ICE Southern Ocean southern SH polar Ice 0.0389170 0.0888580
temperature SO-SPSS Southern Ocean southern SH polar Subpolar seasonally stratified (SPSS) 0.0358043 0.1312189
temperature SO-STSS Southern Ocean southern SH extratropics Subtropical seasonally stratified (STSS) 0.0652036 0.2751257
temperature SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STPS) 0.0281054 0.1133666
temperature Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STPS) 0.0905071 0.1065200
pco2_product_biome_annual_anomaly_merged_ensemble %>%
  filter(name != "fgco2_int", !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")) %>%
  ggplot(aes(x = basin, y = resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(
    ymin = resid - resid_sd,
    ymax = resid + resid_sd,
    col = "fCO2 product\nensemble SD"
  )) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color() +
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(
        name != "fgco2_int",
        product %in% pco2_product_list,
        !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")
      ),
    aes(col = product, shape = product)
  ) +
  scale_color_manual(values = color_products, name = "fCO2 products") +
  scale_shape_manual(values = 21:24, name = "fCO2 products") +
  new_scale_color() +
  new_scale("shape") +
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(
        name != "fgco2_int",
        product %in% gobm_product_list,
        !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")
      ),
    aes(col = product, shape = product),
    position = position_nudge(x = 0.2)
  ) +
  scale_color_manual(values = color_products, name = "GOBMs") +
  scale_shape_manual(values = 21:22, name = "GOBMs") +
  facet_nested(
    name ~ latitude + biome_class,
    scales = "free",
    space = "free_x",
    labeller = labeller(name = x_axis_labels),
    switch = "y",
    nest_line = element_line(linewidth = 0.8),
    solo_line = TRUE,
    strip = strip_nested(
      text_x = list(
        element_text(face = "bold"),
        element_text(face = "bold"),
        element_text(face = "bold"),
        element_text(face = "bold"),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text()
      )
    )
  ) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank()
  )

Version Author Date
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
c6f967e jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
ggsave(width = 10,
       height = 6,
       dpi = 600,
       filename = "../output/biome_anomaly_ensemble_mean_pco2_products.jpg")


p_global <- pco2_product_biome_annual_anomaly_merged_ensemble %>% 
  filter(biome == "Global non-polar") %>% 
  ggplot(aes(basin, resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(ymin = resid - resid_sd,
                     ymax = resid + resid_sd,
                     col = "fCO2 product\nensemble SD")) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color()+
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(biome == "Global non-polar",
             product %in% pco2_product_list),
    aes(col = product),
    # position = position_nudge(x = -0.15),
    shape = 21
  ) +
  scale_color_manual(values = color_products,
                     name = "fCO2 products") +
  new_scale_color()+
  geom_point(data = pco2_product_biome_annual_anomaly_merged %>% 
               filter(biome == "Global",
                      product %in% gobm_product_list),
             aes(col = product),
             position = position_nudge(x = 0.2),
             shape = 21) +
  scale_color_manual(values = color_products,
                     name = "GOBMs") +
  facet_nested(name ~ latitude + biome_class, 
             scales = "free", space = "free_x",
             labeller = labeller(name = x_axis_labels),
             switch = "y",
             nest_line = element_line(),
             solo_line = TRUE) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank(),
    legend.position = "none"
  )
  
p_biome <- pco2_product_biome_annual_anomaly_merged_ensemble %>% 
  filter(biome != "Global non-polar") %>% 
  ggplot(aes(basin, resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(ymin = resid - resid_sd,
                     ymax = resid + resid_sd,
                     col = "fCO2 product\nensemble SD")) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color()+
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(biome != "Global non-polar",
             product %in% pco2_product_list),
    aes(col = product),
    # position = position_nudge(x = -0.15),
    shape = 21
  ) +
  scale_color_manual(values = color_products,
                     name = "fCO2 products") +
  new_scale_color()+
  geom_point(data = pco2_product_biome_annual_anomaly_merged %>% 
               filter(biome != "Global non-polar",
                      product %in% gobm_product_list),
             aes(col = product),
             position = position_nudge(x = 0.2),
             shape = 21) +
  scale_color_manual(values = color_products,
                     name = "GOBMs") +
  facet_nested(name ~ latitude + biome_class, 
             scales = "free", space = "free_x",
             labeller = labeller(name = ""),
             # switch = "y",
             nest_line = element_line(),
             solo_line = TRUE
             ) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.right = element_text(colour = "transparent",
                                      size = 0),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank(),
    legend.position = "bottom",
    legend.direction = "vertical"
  )


ggsave(cowplot::plot_grid(p_global, p_biome,
                   align = "hv",
                   axis = "tb",
                   rel_widths = c(1,7)),
       width = 12,
       height = 8,
       dpi = 600,
       filename = "../output/biome_anomaly_ensemble_mean_pco2_products_with_integrated_flux_and_SO.jpg")

Seasonal anomalies

Flux anomaly correlation

The following plots aim to unravel the correlation between biome-, super-biome- or globally- integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot the globally and biome-integrated fluxes separately. Secondly, we normalize the anomalies to the monthly spread (expressed as standard deviation) of the anomalies from 1990 to 2021.

Annual anomalies

Absolute

pco2_product_biome_annual_anomaly %>%
  filter(biome %in% c("Global non-polar", key_biomes),
         name %in% name_core) %>%
  mutate(biome = if_else(biome == "Global non-polar", "Global non-polar", biome)) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # tail(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        method = "lm",
        fill = "grey",
        col = "grey40",
        fullrange = TRUE,
        level = 0.68
      ) +
      geom_point(
        data = . %>% filter(!year %in% c(2023, 1997, 2015)),
        aes(fill = "1990-2022"),
        shape = 21
      ) +
      scale_color_manual(values = "grey60", name = "X") +
      scale_fill_manual(values = "grey60", name = "X") +
      new_scale_fill() +
      new_scale_color() +
      geom_point(
        data = . %>% filter(year %in% c(2023, 1997, 2015)),
        aes(fill = as.factor(year)),
        shape = 21,
        size = 3
      )  +
      scale_fill_manual(
        values = rev(warm_cool_gradient[c(17,13,20)]),
        guide = guide_legend(reverse = TRUE,
                             order = 2)
      ) +
      scale_color_manual(
        values = rev(warm_cool_gradient[c(17,13,20)]),
        guide = guide_legend(reverse = TRUE,
                             order = 2)
      ) +
      labs(y = labels_breaks("fgco2_int")$i_legend_title,
           x = labels_breaks(unique(.x$name))$i_legend_title) +
      facet_grid2(
        product ~ biome,
        scales = "free",
        independent = "y"
      ) +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown(),
        legend.title = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
4acb1fc jens-daniel-mueller 2024-09-05
aecb187 jens-daniel-mueller 2024-08-28
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
0493049 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
571e2f8 jens-daniel-mueller 2024-05-22
29e0ec4 jens-daniel-mueller 2024-05-21
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03
ggsave(width = 8,
       height = 10,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_all_pco2_products.jpg")


pco2_product_biome_annual_anomaly_ensemble <-
  pco2_product_biome_annual_anomaly %>%
  filter(name %in% name_core, product %in% pco2_product_list) %>%
  select(-c(value, fit, product)) %>%
  fgroup_by(name, biome, year) %>%
  fsummarise(sd = fsd(resid),
             mean = fmean(resid))

pco2_product_biome_annual_anomaly_ensemble <-
  full_join(
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name == "fgco2_int") %>%
      pivot_wider(values_from = c(sd, mean)),
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name != "fgco2_int")
  )



pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("fgco2_int", "temperature")) %>%
  select(-contains("value")) %>%
  pivot_wider(values_from = contains("resid")) %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(resid_temperature, resid_fgco2_int)) +
  # geom_vline(xintercept = 0) +
  # geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  )+
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = "1990-2022"
    )
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = "1990-2022"
    )
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(y = labels_breaks("fgco2_int")$i_legend_title,
       x = labels_breaks(unique("temperature"))$i_legend_title) +
  facet_wrap(~ biome, scales = "free") +
  # theme_classic() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank()
    # strip.background = element_blank()
  )

Version Author Date
4acb1fc jens-daniel-mueller 2024-09-05
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
ba4aaac jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
dd97823 jens-daniel-mueller 2024-06-28
c6f967e jens-daniel-mueller 2024-06-28
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
0493049 jens-daniel-mueller 2024-05-29
7013182 jens-daniel-mueller 2024-05-27
571e2f8 jens-daniel-mueller 2024-05-22
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03
ggsave(width = 8,
       height = 6,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_ensemble_mean_pco2_products.jpg")


pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("fgco2_int", "temperature")) %>%
  select(-contains("value")) %>%
  pivot_wider(values_from = contains("resid")) %>%
  ggplot(aes(resid_temperature, resid_fgco2_int)) +
  # geom_vline(xintercept = 0) +
  # geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
        level = 0.68
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = "1990-2022"
    )
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = "1990-2022"
    )
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(y = labels_breaks("fgco2_int")$i_legend_title,
       x = labels_breaks(unique("temperature"))$i_legend_title) +
  facet_wrap(~ biome, scales = "free",
             ncol = 4) +
  # theme_classic() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
4acb1fc jens-daniel-mueller 2024-09-05
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
67956dd jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
0493049 jens-daniel-mueller 2024-05-29
b99b329 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
571e2f8 jens-daniel-mueller 2024-05-22
29e0ec4 jens-daniel-mueller 2024-05-21
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03
ggsave(width = 9,
       height = 12,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_ensemble_mean_pco2_products_all_biomes.jpg")


pco2_product_biome_annual_anomaly %>%
  filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int)) %>% 
  group_by(product, name, biome) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(product,name,fill=correlation)) +
  geom_tile() +
  scale_fill_divergent() +
  facet_wrap(~ biome) +
  labs(title = "Correlation with FCO2 on a annual mean basis") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1),
        axis.title = element_blank(),
        legend.position = c(0.85,0.1),
        legend.direction = "horizontal")

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
67956dd jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
0493049 jens-daniel-mueller 2024-05-29
7013182 jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
571e2f8 jens-daniel-mueller 2024-05-22
29e0ec4 jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03
pco2_product_biome_monthly_anomaly %>%
filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int)) %>% 
  group_by(product, name, biome) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(product,name,fill=correlation)) +
  geom_tile() +
  scale_fill_divergent() +
  facet_wrap(~ biome) +
  labs(title = "Correlation with FCO2 on a monthly mean basis") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1),
        axis.title = element_blank(),
        legend.position = c(0.85,0.1),
        legend.direction = "horizontal")

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
67956dd jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
478e699 jens-daniel-mueller 2024-06-14
0493049 jens-daniel-mueller 2024-05-29
7013182 jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
571e2f8 jens-daniel-mueller 2024-05-22
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03
pco2_product_biome_monthly_anomaly %>%
filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int)) %>% 
  group_by(product, name, biome, month) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(month, correlation, col = name)) +
  geom_hline(yintercept = 0) +
  geom_path() +
  facet_grid(product ~ biome) +
  labs(title = "Correlation with FCO2 on a monthly mean basis")

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
0493049 jens-daniel-mueller 2024-05-29
7013182 jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
571e2f8 jens-daniel-mueller 2024-05-22
29e0ec4 jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
589243f jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
3fea035 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
19f40c9 jens-daniel-mueller 2024-04-05
a83c8fc jens-daniel-mueller 2024-04-03

Monthly anomalies

Absolute

pco2_product_biome_monthly_detrended %>%
  filter(biome == "Global non-polar") %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
d82bd91 jens-daniel-mueller 2024-08-27
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
29e0ec4 jens-daniel-mueller 2024-05-21
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12
58e3680 jens-daniel-mueller 2024-04-11
pco2_product_biome_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
d82bd91 jens-daniel-mueller 2024-08-27
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
b99b329 jens-daniel-mueller 2024-05-28
29e0ec4 jens-daniel-mueller 2024-05-21
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
4b81eaf jens-daniel-mueller 2024-05-07
60abdac jens-daniel-mueller 2024-04-23
1ff6eb0 jens-daniel-mueller 2024-04-22
9ecd92e jens-daniel-mueller 2024-04-22
231f7cd jens-daniel-mueller 2024-04-17
a5911f0 jens-daniel-mueller 2024-04-17
6709afa jens-daniel-mueller 2024-04-12

fCO2 decomposition

pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(biome %in% c("Global non-polar",key_biomes)) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(df = .x,
               title  = paste("Anomalies from predicted monthly mean |", .x$biome))
  )
[[1]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
b18b0e5 jens-daniel-mueller 2024-06-28
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
b754e95 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14

[[2]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b18b0e5 jens-daniel-mueller 2024-06-28
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
b754e95 jens-daniel-mueller 2024-05-28
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14

[[3]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b18b0e5 jens-daniel-mueller 2024-06-28
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
b754e95 jens-daniel-mueller 2024-05-28
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14

[[4]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
b754e95 jens-daniel-mueller 2024-05-28
29e0ec4 jens-daniel-mueller 2024-05-21
5af03d1 jens-daniel-mueller 2024-05-17
dbc1fc6 jens-daniel-mueller 2024-05-16
1e4c153 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
pco2_product_biome_annual_fCO2_decomposition <-
  pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome, product) %>%
  summarise(resid = mean(resid)) %>%
  ungroup() %>%
  group_by(year, name, biome) %>%
  summarise(resid_sd = sd(resid), resid = mean(resid)) %>%
  ungroup()

pco2_product_biome_annual_fCO2_decomposition %>%
  ggplot(aes(year, resid, colour = name)) +
  geom_hline(yintercept = 0) +
  geom_path() +
  facet_wrap( ~ biome)

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
pco2_product_biome_annual_fCO2_decomposition %>%
  pivot_wider(values_from = contains("resid")) %>% 
  ggplot(aes(resid_sfco2_therm, resid_sfco2_nontherm, col = "observed")) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_abline(slope = -1, intercept = 0) +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(shape = 21) +
  scale_color_muted() +
  facet_wrap( ~ biome, scales = "free")

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
  scale_fill_manual(values = c(warm_color, cold_color, "grey80")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  facet_wrap(~ biome, scales = "free_y") +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    legend.position = c(0.9, 0.1)
  )

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023, biome %in% c("PEQU-E", "NA-STPS")) %>%
  mutate(name = case_when(
    name == "sfco2_therm" ~ "thermal",
    name == "sfco2_nontherm" ~ "non-thermal",
    name == "sfco2_total" ~ "total"
  ),
  name = fct_inorder(name)) %>% 
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
  geom_text(
    data = . %>% filter(biome == "NA-STPS"),aes(
    label = name,
    col = name,
    hjust = if_else(sign(resid) > 0, 0, 1),
    y = resid + if_else(sign(resid) > 0, 1, -1)
  ),
  angle = 90,
  fontface = "bold") +
  scale_color_manual(values = c(warm_color, cold_color, "grey20")) +
  scale_fill_manual(values = c(warm_color, cold_color, "grey20")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  scale_y_continuous(breaks = seq(-20, 20, 20)) +
  facet_grid(. ~ fct_rev(biome)) +
  theme_classic() +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.background = element_blank(),
    strip.text = element_text(face = "bold", size = 16),
    axis.line.x = element_blank(),
    legend.position = "none"
  )

Version Author Date
3bb8433 jens-daniel-mueller 2024-09-03
c50054d jens-daniel-mueller 2024-08-29
# ggsave(width = 6,
#        height = 3,
#        dpi = 600,
#        filename = "../output/biome_annual_fco2_decomposition.jpg")

pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  mutate(name = case_when(
    name == "sfco2_therm" ~ "thermal",
    name == "sfco2_nontherm" ~ "non-thermal",
    name == "sfco2_total" ~ "total"
  ),
  name = fct_inorder(name)) %>% 
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
    geom_linerange(aes(
    name,
    ymin = resid - resid_sd,
    ymax = resid + resid_sd
  ), col = "grey20") +
  scale_color_manual(values = c(warm_color, cold_color, "grey20")) +
  scale_fill_manual(values = c(warm_color, cold_color, "grey20")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  facet_wrap(. ~ biome, scales = "free_y", ncol = 4) +
  theme(
    legend.title = element_blank(),
    legend.position = c(0.9,0.1),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown()
  )

Version Author Date
713d232 jens-daniel-mueller 2024-09-12
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
ggsave(width = 7,
       height = 7,
       dpi = 600,
       filename = "../output/biome_annual_fco2_decomposition_all_biomes.jpg")

Flux attribution

Seasonal

pco2_product_biome_annual_flux_attribution_ensemble <- 
pco2_product_biome_annual_flux_attribution %>%
      filter(product %in% pco2_product_list) %>% 
      group_by(biome, name) %>% 
      summarise(
        resid_sd = sd(resid),
        resid = mean(resid)) %>% 
      ungroup()



pco2_product_biome_annual_flux_attribution_ensemble %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(aes("", resid), fill = "grey90", col = "grey20") +
  geom_point(
    data = pco2_product_biome_annual_flux_attribution %>%
      filter(biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    shape = 21
  ) +
  scale_fill_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10, 10, 0.1)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(
    biome ~ name,
    labeller = labeller(name = x_axis_labels),
    scales = "free_y",
    space = "free_y",
    switch = "x"
  ) +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b99b329 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
571e2f8 jens-daniel-mueller 2024-05-22
563345f jens-daniel-mueller 2024-05-21
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15
00ad9d5 jens-daniel-mueller 2024-05-15
47f8868 jens-daniel-mueller 2024-05-15
pco2_product_biome_annual_flux_attribution_ensemble %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(aes(name, resid, fill = name), col = "grey20") +
  geom_linerange(aes(
    name,
    ymin = resid - resid_sd,
    ymax = resid + resid_sd
  ), col = "grey20") +
  scale_fill_bright(labels = x_axis_labels) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_wrap( ~ biome, scales = "free_y", ncol = 4) +
  theme(
    legend.title = element_blank(),
    legend.text = element_markdown(),
    legend.position = c(0.8,0.1),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown()
  )

Version Author Date
713d232 jens-daniel-mueller 2024-09-12
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b99b329 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
571e2f8 jens-daniel-mueller 2024-05-22
563345f jens-daniel-mueller 2024-05-21
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15
00ad9d5 jens-daniel-mueller 2024-05-15
47f8868 jens-daniel-mueller 2024-05-15
ggsave(width = 7,
       height = 7,
       dpi = 600,
       filename = "../output/biome_annual_flux_attribution_all_biomes.jpg")


ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(
    data = pco2_product_biome_annual_flux_attribution %>%
      filter(biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    position = position_dodge(width = 1),
    alpha = 0.5, col = "grey30"
  ) +
  geom_point(
    data = pco2_product_biome_monthly_flux_attribution %>%
      filter(year == 2023,
             biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    position = position_dodge(width = 1),
    shape = 21, alpha = 0.5, col = "grey30"
  ) +
  scale_fill_manual(values = color_products) +
  # scale_color_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10,10,0.2)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
                          scales = "free_y",
             space = "free_y",
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
c62d92d jens-daniel-mueller 2024-08-23
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b99b329 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
571e2f8 jens-daniel-mueller 2024-05-22
563345f jens-daniel-mueller 2024-05-21
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
b7d0689 jens-daniel-mueller 2024-05-15
00ad9d5 jens-daniel-mueller 2024-05-15
47f8868 jens-daniel-mueller 2024-05-15
pco2_product_biome_monthly_flux_attribution %>%
  filter(year == 2023,
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_path(
    aes(month, resid, col = product)
  ) +
  geom_point(
    aes(month, resid, fill = product),
    shape = 21,
    alpha = 0.5,
    col = "grey30"
  ) +
  scale_fill_manual(values = color_products) +
  scale_color_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10,10,0.2)) +
  scale_x_continuous(position = "top", breaks = seq(1,12,3)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
             scales = "free_y",
             space = "free_y", 
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
b7d0689 jens-daniel-mueller 2024-05-15
00ad9d5 jens-daniel-mueller 2024-05-15
47f8868 jens-daniel-mueller 2024-05-15
pco2_product_biome_monthly_flux_attribution %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(
      df = .x,
      title  = paste("Anomalies from predicted monthly mean |", .x$biome)
    ) +
      facet_grid(
        name ~ product,
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
c62d92d jens-daniel-mueller 2024-08-23
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
b18b0e5 jens-daniel-mueller 2024-06-28
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[2]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b18b0e5 jens-daniel-mueller 2024-06-28
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[3]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b18b0e5 jens-daniel-mueller 2024-06-28
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[4]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

Annual

# pco2_product_biome_annual_flux_attribution <-
# full_join(
# pco2_product_biome_annual_flux_attribution %>% 
#   filter(year == 2023) %>% 
#   select(-year),
# pco2_product_biome_annual_flux_attribution %>% 
#   filter(year != 2023) %>% 
#   group_by(product, biome, name) %>% 
#   summarise(resid_mean = mean(abs(resid))) %>% 
#   ungroup())

pco2_product_biome_annual_flux_attribution %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes("x", resid, fill = product),
               position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(
        aes(
          "x",
          resid_mean * sign(resid),
          group = product,
          col = paste0("Mean\nexcl.",2023)
        ),
        position = "dodge2",
        fill = "transparent"
      ) +
      labs(y = labels_breaks(unique("fgco2"))$i_legend_title,
           title = .x$biome) +
      facet_grid(
        .~name,
        labeller = labeller(name = x_axis_labels),
        switch = "x"
      ) +
      scale_color_grey() +
      theme(
        legend.title = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title.x = element_blank(),
        axis.title.y = element_markdown(),
        strip.text.x.bottom = element_markdown(),
        strip.placement = "outside",
        strip.background.x = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[2]]

Version Author Date
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[3]]

Version Author Date
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

[[4]]

Version Author Date
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
acaac5f jens-daniel-mueller 2024-05-28
b99b329 jens-daniel-mueller 2024-05-28
7b6f27c jens-daniel-mueller 2024-05-27
29e0ec4 jens-daniel-mueller 2024-05-21
7c08e1c jens-daniel-mueller 2024-05-21
dbc1fc6 jens-daniel-mueller 2024-05-16
aea0b99 jens-daniel-mueller 2024-05-16
3310cf6 jens-daniel-mueller 2024-05-16
b7d0689 jens-daniel-mueller 2024-05-15

Merged seasonality plots

pco2_product_biome_monthly_detrended %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("temperature", "fgco2"), biome %in% key_biomes,
         year != 2023) %>%
  group_by(month, biome, name) %>% 
  summarise(resid_sd = sd(resid)) %>% 
  ungroup() %>% 
  ggplot(aes(month, resid_sd)) +
  geom_path() +
  facet_grid(name ~ biome, scales = "free_y")

Version Author Date
b7806ad jens-daniel-mueller 2024-07-02
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
aeca619 jens-daniel-mueller 2024-06-19
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
pco2_product_biome_monthly_detrended %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("temperature", "fgco2"), biome %in% key_biomes) %>%
  p_season(dim_col = "biome", 
           title = "Ensemble mean anomalies from predicted monthly mean") +
  theme(axis.title.x = element_blank(), axis.text.x = element_blank()) +
  new_scale_color() +
  scale_color_manual(values = warm_cool_gradient[15]) +
  geom_path(
    data = pco2_product_biome_monthly_detrended %>%
      filter(
        product %in% gobm_product_list,
        year == 2023,
        name %in% c("temperature", "fgco2"),
        biome %in% key_biomes
      ) %>%
      group_by(year, month, biome, name) %>%
      summarise(across(where(is.numeric), mean)) %>%
      ungroup(),
    aes(month, resid, col = "2023\nGOBM mean")
  )

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
ba4aaac jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
aeca619 jens-daniel-mueller 2024-06-19
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
acaac5f jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_sst_ensemble_mean_pco2_products.jpg")

pco2_product_biome_monthly_flux_attribution %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
         biome %in% key_biomes) %>%
  p_season(dim_col = "biome",
           title = "Ensemble mean drivers of flux anomaly",
           scales = "fixed") +
  new_scale_color() +
  scale_color_manual(values = warm_cool_gradient[15]) +
  geom_path(
    data = pco2_product_biome_monthly_flux_attribution %>%
      filter(
        product %in% gobm_product_list,
        year == 2023,
        name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
        biome %in% key_biomes
      ) %>%
      group_by(year, month, biome, name) %>%
      summarise(across(where(is.numeric), mean)) %>%
      ungroup(),
    aes(month, resid, col = "2023\nGOBM mean")
  )

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
2f165ec jens-daniel-mueller 2024-07-23
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
b18b0e5 jens-daniel-mueller 2024-06-28
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
8cdfed7 jens-daniel-mueller 2024-06-21
aeca619 jens-daniel-mueller 2024-06-19
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
b754e95 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_attribution_ensemble_mean_pco2_products.jpg")

pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("sfco2_nontherm", "sfco2_therm", "sfco2_total"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  p_season(dim_col = "biome",
           title = "Ensemble mean decomposition of fCO2 anomaly")  

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c50054d jens-daniel-mueller 2024-08-29
aecb187 jens-daniel-mueller 2024-08-28
c62d92d jens-daniel-mueller 2024-08-23
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fco2_decomposition_ensemble_mean_pco2_products.jpg")
pco2_product_biome_monthly_detrended %>% 
  filter(year == 2023,
         name %in% c("temperature", "fgco2"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Anomalies from predicted monthly mean") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
aeca619 jens-daniel-mueller 2024-06-19
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
7868a54 jens-daniel-mueller 2024-05-22
ggsave(width = 9,
       height = 3,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_sst_all_products.jpg")

pco2_product_biome_monthly_flux_attribution %>%
  filter(year == 2023,
         name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Drivers of flux anomaly") +
  facet_grid(
    name ~ biome,
    scales = "fixed",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
2f165ec jens-daniel-mueller 2024-07-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
197dac4 jens-daniel-mueller 2024-06-27
8cdfed7 jens-daniel-mueller 2024-06-21
aeca619 jens-daniel-mueller 2024-06-19
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
acaac5f jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
7868a54 jens-daniel-mueller 2024-05-22
ggsave(width = 9,
       height = 3,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_attribution_all_products.jpg")

pco2_product_biome_monthly_fCO2_decomposition %>% 
  filter(year == 2023,
         name %in% c("sfco2_nontherm", "sfco2_therm", "sfco2_total"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Decomposition of fCO2 anomaly") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
878c674 jens-daniel-mueller 2024-09-10
c62d92d jens-daniel-mueller 2024-08-23
4ef742b jens-daniel-mueller 2024-07-20
a58162a jens-daniel-mueller 2024-07-11
4a437fb jens-daniel-mueller 2024-07-09
ba4aaac jens-daniel-mueller 2024-07-08
67956dd jens-daniel-mueller 2024-07-08
b7806ad jens-daniel-mueller 2024-07-02
197dac4 jens-daniel-mueller 2024-06-27
9589349 jens-daniel-mueller 2024-06-27
8cdfed7 jens-daniel-mueller 2024-06-21
aeca619 jens-daniel-mueller 2024-06-19
d2a80a9 jens-daniel-mueller 2024-06-14
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
9cfceb9 jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
b99b329 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
fe97ed3 jens-daniel-mueller 2024-05-25
7868a54 jens-daniel-mueller 2024-05-22
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fco2_decomposition_all_products.jpg")

Biome profiles

The following analysis is available for GOBMs only.

Annual means

2023 anomaly

pco2_product_profiles_annual %>%
  filter(biome %in% key_biomes,
         name %in% name_core) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_vline(xintercept = 0) +
      geom_path(aes(resid, depth, group = year), col = "grey30", alpha = 0.3) +
      geom_path(data = .x %>% filter(year == 2023),
                aes(resid, depth, col = as.factor(year)),
                linewidth = 1) +
      scale_color_brewer(palette = "Set1") +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      coord_cartesian(expand = 0) +
      facet_grid2(biome ~ product,
                  scales = "free_x", independent = "x") +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
[[1]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
d533f68 jens-daniel-mueller 2024-05-28
97eff6a jens-daniel-mueller 2024-05-25

[[2]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
d533f68 jens-daniel-mueller 2024-05-28
97eff6a jens-daniel-mueller 2024-05-25

[[3]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
4d3ccb2 jens-daniel-mueller 2024-05-29
d533f68 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25

Monthly means

2023 anomaly

pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         name %in% name_core) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_vline(xintercept = 0) +
      geom_path(aes(resid, depth, col = as.factor(month)),
                linewidth = 1) +
      scale_color_viridis_d(option = "magma", end = .8) +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      coord_cartesian(expand = 0) +
      facet_grid2(biome ~ product,
                  scales = "free_x", independent = "x") +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
[[1]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
fbba0a0 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
97eff6a jens-daniel-mueller 2024-05-25

[[2]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
fbba0a0 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
97eff6a jens-daniel-mueller 2024-05-25

[[3]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
4d3ccb2 jens-daniel-mueller 2024-05-29
fbba0a0 jens-daniel-mueller 2024-05-28
d533f68 jens-daniel-mueller 2024-05-28
7013182 jens-daniel-mueller 2024-05-27
97eff6a jens-daniel-mueller 2024-05-25
pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "ETHZ-CESM",
         name %in% name_core) %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Anomalies from monthly baseline (deseasonalized)")

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
8cdfed7 jens-daniel-mueller 2024-06-21
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
e83b65a jens-daniel-mueller 2024-05-31
6fc213f jens-daniel-mueller 2024-05-31
fc1b92d jens-daniel-mueller 2024-05-30
4d3ccb2 jens-daniel-mueller 2024-05-29
acaac5f jens-daniel-mueller 2024-05-28
# ggsave(width = 10,
#        height = 8,
#        dpi = 600,
#        filename = "../output/CESM_2023_anomaly_profiles.jpg")

pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "ETHZ-CESM",
         name %in% name_core) %>%
  arrange(month) %>% 
  group_by(biome, name, depth) %>% 
  mutate(resid = resid - first(resid)) %>% 
  ungroup() %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Monthly anomaly evolution relative to January 2023")

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
2a28b07 jens-daniel-mueller 2024-07-22
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
6fc213f jens-daniel-mueller 2024-05-31
fc1b92d jens-daniel-mueller 2024-05-30
pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "FESOM-REcoM",
         name %in% name_core) %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Anomalies from monthly baseline (deseasonalized)")

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
ba4aaac jens-daniel-mueller 2024-07-08
197dac4 jens-daniel-mueller 2024-06-27
f03b1d8 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
34b4fe2 jens-daniel-mueller 2024-06-12
0a7394b jens-daniel-mueller 2024-06-11
54af933 jens-daniel-mueller 2024-06-03
# ggsave(width = 10,
#        height = 8,
#        dpi = 600,
#        filename = "../output/FESOM_2023_anomaly_profiles.jpg")

Hovmoeller

plot_list <-
  full_join(
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      select(product, month, biome, mld = value)
  ) %>%
  group_split(name, biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      )+
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(20, 50, 100, 200, 400)) +
      coord_cartesian(expand = 0,
                      ylim = c(300,NA)) +
      facet_grid(product ~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1,
                                        lineheight = 1.5)
      )
  )

plot_list
[[1]]

Version Author Date
2a28b07 jens-daniel-mueller 2024-07-22
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08

[[2]]

Version Author Date
2a28b07 jens-daniel-mueller 2024-07-22
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08

[[3]]

Version Author Date
2a28b07 jens-daniel-mueller 2024-07-22
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08

[[4]]

Version Author Date
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08

[[5]]

Version Author Date
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08

[[6]]

Version Author Date
a58162a jens-daniel-mueller 2024-07-11
ba4aaac jens-daniel-mueller 2024-07-08
ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 12,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_all_gobm.jpg")

plot_list <-
  full_join(
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ) %>% 
      arrange(month) %>% 
      group_by(product, name, biome, depth) %>% 
      mutate(resid = if_else(name == "sdissic_stalk",
                             resid - first(resid),
                             resid)) %>% 
      ungroup(),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      select(product, month, biome, mld = value)
  ) %>%
  group_split(name, biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      )+
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(20, 50, 100, 200, 400)) +
      coord_cartesian(expand = 0,
                      ylim = c(300,NA)) +
      facet_grid(product ~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1,
                                        lineheight = 1.5)
      )
  )

ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 12,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_all_gobm_evolution.jpg")
CESM_depth_grid <- pco2_product_profiles_monthly %>%
  filter(year == 2023, 
         product == "ETHZ-CESM",
         biome %in% key_biomes,
         name %in% c("sdissic_stalk", "thetao")) %>%
  distinct(name, biome, month, depth)

pco2_product_profiles_monthly_FESOM_regrid <-
full_join(
  pco2_product_profiles_monthly %>%
    filter(
      year == 2023,
      product == "FESOM-REcoM",
      biome %in% key_biomes,
      name %in% c("sdissic_stalk", "thetao")
    ),
  CESM_depth_grid %>% mutate(product = "FESOM-REcoM")
)

pco2_product_profiles_monthly_FESOM_regrid <-
pco2_product_profiles_monthly_FESOM_regrid %>%
  arrange(product, name, biome, month, depth)
  
  
pco2_product_profiles_monthly_FESOM_regrid <-
pco2_product_profiles_monthly_FESOM_regrid %>%
  arrange(depth) %>%
  group_by(product, name, biome, month) %>%
  mutate(resid = spline(
    depth,
    resid,
    method = "natural",
    xout = depth
  )$y) %>%
  ungroup()

CESM_depth <- 
  CESM_depth_grid %>% distinct(depth) %>% pull()

pco2_product_profiles_monthly_FESOM_regrid <-
  pco2_product_profiles_monthly_FESOM_regrid %>%
  filter(depth %in% CESM_depth)


pco2_product_profiles_monthly_merged <-
  bind_rows(
    pco2_product_profiles_monthly_FESOM_regrid,
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        product == "ETHZ-CESM",
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      )
  )


pco2_product_profiles_monthly_ensemble <-
  pco2_product_profiles_monthly_merged %>%
  group_by(name, biome, month, depth) %>%
  summarise(resid = mean(resid)) %>%
  ungroup()


pco2_product_profiles_monthly_ensemble <-
  full_join(
    pco2_product_profiles_monthly_ensemble %>%
      filter(
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      group_by(month, biome) %>% 
      summarise(mld = mean(value)) %>% 
      ungroup()
  ) 



# plot_list <-
  pco2_product_profiles_monthly_ensemble %>%
  group_split(name, biome) %>% 
  head(1) %>% 
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(50, 100, 200, 400)) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1, lineheight = 1.5)
      )
  )
[[1]]

Version Author Date
c50054d jens-daniel-mueller 2024-08-29
ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 8,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_ensemble_mean_gobm.jpg")
labels_breaks_hov <- function(i_name, i_biome) {
  
  if (i_name == "sdissic_stalk") {
    i_legend_title <- "sDIC - sTA<br>anom.<br>(μmol kg<sup>-1</sup>)"
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp.<br>anom.<br>(°C)"
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "NA-SPSS") {
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "NA-SPSS") {
    i_breaks <- c(-Inf, seq(-0.4, 0.4, 0.1), Inf)
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "NA-STPS") {
    i_breaks <- c(-Inf, seq(-2.4, 2.4, 0.6), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "NA-STPS") {
    i_breaks <- c(-Inf, seq(-0.6, 0.6, 0.15), Inf)
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "PEQU-E") {
    i_breaks <- c(-Inf, seq(-32, 32, 8), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "PEQU-E") {
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  i_breaks_labels <- i_breaks[!i_breaks == Inf]
  i_breaks_labels <- i_breaks_labels[!i_breaks_labels == -Inf]
  i_breaks_labels[seq_along(i_breaks_labels) %% 2 == 0] <- ""
  
  all_labels_breaks <- lst(i_legend_title, i_breaks, i_breaks_labels)
  
  return(all_labels_breaks)
  
}

labels_breaks_hov("sdissic_stalk", "NA-SPSS")
$i_legend_title
[1] "sDIC - sTA<br>anom.<br>(μmol kg<sup>-1</sup>)"

$i_breaks
 [1] -Inf -2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0  Inf

$i_breaks_labels
[1] "-2" ""   "-1" ""   "0"  ""   "1"  ""   "2" 
plot_list_left <-
  pco2_product_profiles_monthly_ensemble %>%
  arrange(month) %>%
  group_by(name, biome, depth) %>%
  mutate(resid = if_else(name == "sdissic_stalk", resid - first(resid), resid)) %>%
  ungroup() %>%
  group_split(biome, name) %>%
  head(2) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid),
                          breaks = labels_breaks_hov(.x %>% distinct(name),
                                                     .x %>% distinct(biome))$i_breaks) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        super = ScaleDiscretised,
        name = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_legend_title,
        labels = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_breaks_labels
      ) +
      # scale_fill_gradientn(
      #   colours = warm_cool_gradient,
      #   rescaler = ~ scales::rescale_mid(.x, mid = 0),
      #   super = ScaleDiscretised,
      #   name = labels_breaks(.x %>% distinct(name))$i_legend_title
      # ) +
      scale_y_continuous(
        trans = trans_reverser("sqrt"),
        breaks = c(20, 50, 100, 200, 400)
      ) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      labs(y = "Depth (m)",
           x = "Month") +
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(5, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(hjust = 1,
                                        lineheight = 1.5)
      )
  )

plot_list_right <-
  pco2_product_profiles_monthly_ensemble %>%
  arrange(month) %>%
  group_by(name, biome, depth) %>%
  mutate(resid = if_else(name == "sdissic_stalk", resid - first(resid), resid)) %>%
  ungroup() %>%
  group_split(biome, name) %>%
  tail(4) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid),
                          breaks = labels_breaks_hov(.x %>% distinct(name),
                                                     .x %>% distinct(biome))$i_breaks) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        super = ScaleDiscretised,
        name = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_legend_title,
        labels = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_breaks_labels
      ) +
      scale_y_continuous(
        trans = trans_reverser("sqrt"),
        breaks = c(20, 50, 100, 200, 400)
      ) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      labs(y = "Depth (m)", x = "Month")+
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(5, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        # legend.margin = margin(0, 0, 0, 0),
        # legend.justification = "left",
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_blank()
      )
  )

plot_list <- c(plot_list_left, plot_list_right)

ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 10,
       height = 6,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_ensemble_mean_gobm_evolution.jpg")

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4    cmocean_0.3-1       ggh4x_0.2.8        
 [4] scales_1.2.1        biscale_1.0.0       ggtext_0.1.2       
 [7] khroma_1.9.0        ggnewscale_0.4.8    terra_1.7-65       
[10] sf_1.0-9            rnaturalearth_0.1.0 geomtextpath_0.1.1 
[13] colorspace_2.0-3    marelac_2.1.10      shape_1.4.6        
[16] ggforce_0.4.1       metR_0.13.0         scico_1.3.1        
[19] patchwork_1.1.2     collapse_1.8.9      forcats_0.5.2      
[22] stringr_1.5.0       dplyr_1.1.3         purrr_1.0.2        
[25] readr_2.1.3         tidyr_1.3.0         tibble_3.2.1       
[28] ggplot2_3.4.4       tidyverse_1.3.2     workflowr_1.7.0    

loaded via a namespace (and not attached):
  [1] readxl_1.4.1            backports_1.4.1         systemfonts_1.0.4      
  [4] sp_1.5-1                splines_4.2.2           digest_0.6.30          
  [7] htmltools_0.5.3         fansi_1.0.3             magrittr_2.0.3         
 [10] checkmate_2.1.0         memoise_2.0.1           googlesheets4_1.0.1    
 [13] tzdb_0.3.0              modelr_0.1.10           vroom_1.6.0            
 [16] svglite_2.1.0           timechange_0.1.1        rvest_1.0.3            
 [19] textshaping_0.3.6       haven_2.5.1             xfun_0.35              
 [22] callr_3.7.3             crayon_1.5.2            jsonlite_1.8.3         
 [25] glue_1.6.2              polyclip_1.10-4         gtable_0.3.1           
 [28] gargle_1.2.1            webshot_0.5.4           DBI_1.1.3              
 [31] Rcpp_1.0.11             isoband_0.2.6           viridisLite_0.4.1      
 [34] gridtext_0.1.5          units_0.8-0             bit_4.0.5              
 [37] proxy_0.4-27            httr_1.4.4              seacarb_3.3.1          
 [40] RColorBrewer_1.1-3      ellipsis_0.3.2          pkgconfig_2.0.3        
 [43] farver_2.1.1            sass_0.4.4              dbplyr_2.2.1           
 [46] utf8_1.2.2              here_1.0.1              tidyselect_1.2.0       
 [49] labeling_0.4.2          rlang_1.1.1             later_1.3.0            
 [52] munsell_0.5.0           cellranger_1.1.0        tools_4.2.2            
 [55] cachem_1.0.6            cli_3.6.1               generics_0.1.3         
 [58] broom_1.0.5             evaluate_0.18           fastmap_1.1.0          
 [61] yaml_2.3.6              ragg_1.2.4              oce_1.7-10             
 [64] processx_3.8.0          knitr_1.41              bit64_4.0.5            
 [67] fs_1.5.2                nlme_3.1-160            whisker_0.4            
 [70] xml2_1.3.3              compiler_4.2.2          rstudioapi_0.15.0      
 [73] e1071_1.7-12            reprex_2.0.2            tweenr_2.0.2           
 [76] bslib_0.4.1             stringi_1.7.8           highr_0.9              
 [79] ps_1.7.2                lattice_0.20-45         Matrix_1.5-3           
 [82] classInt_0.4-8          commonmark_1.8.1        markdown_1.4           
 [85] vctrs_0.6.4             pillar_1.9.0            lifecycle_1.0.3        
 [88] jquerylib_0.1.4         gsw_1.1-1               data.table_1.14.6      
 [91] cowplot_1.1.1           httpuv_1.6.6            R6_2.5.1               
 [94] promises_1.2.0.1        KernSmooth_2.23-20      codetools_0.2-18       
 [97] MASS_7.3-58.1           assertthat_0.2.1        rprojroot_2.0.3        
[100] withr_2.5.0             SolveSAPHE_2.1.0        mgcv_1.8-41            
[103] parallel_4.2.2          hms_1.1.2               grid_4.2.2             
[106] rnaturalearthdata_0.1.0 class_7.3-20            rmarkdown_2.18         
[109] googledrive_2.0.0       git2r_0.30.1            getPass_0.2-2          
[112] lubridate_1.9.0