Last updated: 2024-07-10

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 334ff26. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data
    Ignored:    output/

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mhw_stats.Rmd) and HTML (docs/mhw_stats.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 334ff26 jens-daniel-mueller 2024-07-10 manual commit
Rmd 134db94 jens-daniel-mueller 2024-06-28 manual commit
Rmd 88b4e04 jens-daniel-mueller 2024-06-26 started to apply biome mask
html caec400 jens-daniel-mueller 2024-06-13 Build site.
html 3148fef jens-daniel-mueller 2024-06-13 Build site.
html a60be97 jens-daniel-mueller 2024-06-12 Build site.
html d46002d jens-daniel-mueller 2024-06-12 manual commit
html 03c415f jens-daniel-mueller 2024-06-11 Build site.
html 5261667 jens-daniel-mueller 2024-06-11 manual commit
html 2b34bf8 jens-daniel-mueller 2024-06-11 manual commit
html 6954c65 jens-daniel-mueller 2024-06-06 Build site.
html 009791f jens-daniel-mueller 2024-05-14 Build site.
html 7f9c687 jens-daniel-mueller 2024-04-23 Build site.
html ce4e2a6 jens-daniel-mueller 2024-04-17 Build site.
html 58e3680 jens-daniel-mueller 2024-04-11 Build site.
html dfcf790 jens-daniel-mueller 2024-04-11 Build site.
html 139bc97 jens-daniel-mueller 2024-04-11 manual deletion of files
Rmd 36a6467 jens-daniel-mueller 2024-04-11 manual commit
html 69dc18c jens-daniel-mueller 2024-04-04 Build site.
html c9d994c jens-daniel-mueller 2024-04-04 Build site.
html 40cb158 jens-daniel-mueller 2024-04-03 Build site.
html a83c8fc jens-daniel-mueller 2024-04-03 Build site.
html 84bd8d9 jens-daniel-mueller 2024-03-29 Build site.
Rmd 01b3ddc jens-daniel-mueller 2024-03-29 print all maps
html 6bb7ce2 jens-daniel-mueller 2024-03-25 Build site.
html be31dbd jens-daniel-mueller 2024-03-25 Build site.
Rmd a3b3d64 jens-daniel-mueller 2024-03-25 header updated
html 9bfb3c6 jens-daniel-mueller 2024-03-25 Build site.
Rmd f9d2b99 jens-daniel-mueller 2024-03-25 total cummulative intensity added
html b49e6d3 jens-daniel-mueller 2024-03-25 Build site.
Rmd 7c3d1c8 jens-daniel-mueller 2024-03-25 total cummulative intensity added
html 63cf3cb jens-daniel-mueller 2024-03-25 Build site.
Rmd 5eb5491 jens-daniel-mueller 2024-03-25 fig asp ratio adapted
html 95837a3 jens-daniel-mueller 2024-03-25 Build site.
Rmd 25ae269 jens-daniel-mueller 2024-03-25 Daily MHW stats added
html 4589270 jens-daniel-mueller 2024-03-24 Build site.
html 5d6554a jens-daniel-mueller 2024-03-24 Build site.
Rmd e537d66 jens-daniel-mueller 2024-03-24 MHW stats started
html dd640bd jens-daniel-mueller 2024-03-24 Build site.
Rmd 6358178 jens-daniel-mueller 2024-03-24 seperate biome mask
html 62ea4dd jens-daniel-mueller 2024-03-24 Build site.
html 1a5167d jens-daniel-mueller 2024-03-24 Build site.
Rmd cf4f62f jens-daniel-mueller 2024-03-23 MHW stats and CMEMS added

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Load masks

map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))


biome_mask %>% 
  filter(!str_detect(biome, "SO-")) %>% 
  pull(lat) %>% 
  max()
[1] 79.5

Read data

MHW_cat_pixel_2023 <- read_rds(here::here("data/MHW_cat_pixel_2023.Rds"))

MHW_cat_pixel_2023 <-
  MHW_cat_pixel_2023 %>%
  rename(time = t) %>%
  mutate(lon = if_else(lon < 20, lon + 360, lon))


# MHW_cat_daily_2023 <- read_rds(here::here("/data/MHW_cat_daily_2023.Rds")

cat.clim.files <- list.files(here::here("data/input/MHW_2023"),
                             full.names = TRUE)

cat.clim <- cat.clim.files %>%
  map_dfr(read_rds)

rm(cat.clim.files)

cat.clim <-
  cat.clim %>%
  rename(time = t) %>%
  mutate(lon = if_else(lon < 20, lon + 360, lon))

cat.clim <-
  cat.clim %>%
  mutate(mday = mday(time),
         month = month(time))
inner_join(
  biome_mask %>% mutate(
    lon_min = lon - 0.5,
    lon_max = lon + 0.5,
    lat_min = lat - 0.5,
    lat_max = lat + 0.5
  ) %>%
    select(-c(lon, lat)),
  cat.clim %>% as_tibble(),
  by = join_by(between(lon, lon_min, lon_max) &
                 between(lat, lat_min, lat_max))
)
path_out <- "/net/kryo/work/datasets/gridded/ocean/2d/obs/mhw"

MHW maps

Selected dates

fillColCat <- c(
  "I Moderate" = "#ffc866",
  "II Strong" = "#ff6900",
  "III Severe" = "#9e0000",
  "IV Extreme" = "#2d0000"
)


map +
  geom_raster(data =
              cat.clim %>% filter(mday == 1,
                                  month %in% c(2, 5, 8, 11)),
            aes(lon, lat, fill = category)) +
  scale_fill_manual(values = fillColCat,
                    name = "MHW category") +
  facet_wrap( ~ time, ncol = 1)

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
430e926 jens-daniel-mueller 2024-07-10
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
b49e6d3 jens-daniel-mueller 2024-03-25
95837a3 jens-daniel-mueller 2024-03-25
map +
  geom_raster(data = cat.clim %>%
                distinct(lon, lat), aes(lon, lat))

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
area_total <-
cat.clim %>%
  distinct(lon, lat) %>% 
  mutate(area = earth_surf(lat, lon)) %>% 
  summarise(area_total = sum(area)) %>% 
  pull()

cat.clim.timeseries <-
  cat.clim %>%
  mutate(area = earth_surf(lat, lon)) %>%
  group_by(time) %>%
  summarise(area_mhw = sum(area)) %>%
  ungroup() %>%
  mutate(area_mhw_rel = area_mhw / area_total)

cat.clim.timeseries %>% 
  ggplot(aes(time, area_mhw_rel)) +
  geom_path()

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
cat.clim <-
  cat.clim %>%
  as_tibble() %>%
  select(-c(event_no, mday, month))
  
cat.clim %>% 
  write_csv(paste0(path_out,"/2023_mhw_raw.csv"))


cat.clim <-
  cat.clim %>%
  mutate(lon = if_else(lon > 180,
                       lon - 360,
                       lon))
  
# convert from tibble to stars object

cat.clim_stars <- st_as_stars(
  cat.clim,
  dims = c("lon", "lat", "time")
)

# assign coordinate system to horizontal (lon, lat) coordinates
# st_crs(cat.clim_stars) <- "+proj=longlat"
st_crs(cat.clim_stars) <- st_crs(4326)

# plot variable per depth level
ggplot() +
  geom_stars(data = cat.clim_stars %>% slice(time,1:2),
             aes(fill = category)) +
  scale_fill_manual(values = fillColCat,
                    name = "MHW category") +
  facet_wrap(~ time)


file_out <- paste0(path_out,"/2023_mhw_raw.nc")

# write stars object to .nc file
cat.clim_stars %>%
  write_mdim(file_out)

Days per category

cat.clim.stats <-
  cat.clim %>% 
  count(lon, lat, category)


map +
  geom_raster(data =
              cat.clim.stats, aes(lon, lat, fill = n)) +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       limits = c(0,365),
                       name = "Days") +
  labs(title = "MHW days per category in 2023") +
  facet_wrap(~ category, ncol = 1)

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
430e926 jens-daniel-mueller 2024-07-10
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
b49e6d3 jens-daniel-mueller 2024-03-25
63cf3cb jens-daniel-mueller 2024-03-25
95837a3 jens-daniel-mueller 2024-03-25

Days exceeding category

cat.clim.stats.all <-
  cat.clim.stats %>%
  complete(lon, lat, category, n = 0)

cat.clim.stats.all <-
  cat.clim.stats.all %>%
  arrange(desc(category)) %>%
  group_by(lon, lat) %>%
  mutate(n_cum = cumsum(n)) %>%
  ungroup()

cat.clim.stats.all <-
  cat.clim.stats.all %>%
  filter(n_cum > 0) %>%
  mutate(category = paste(">=", category))


map +
  geom_raster(data =
              cat.clim.stats.all, 
              aes(lon, lat, fill = n_cum)) +
  scale_fill_viridis_c(option = "magma",
                       direction = -1,
                       limits = c(0,365),
                       name = "Days") +
  labs(title = "MHW days exceeding category in 2023") +
  facet_wrap(~ category, ncol = 1)

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
430e926 jens-daniel-mueller 2024-07-10
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
b49e6d3 jens-daniel-mueller 2024-03-25
63cf3cb jens-daniel-mueller 2024-03-25
95837a3 jens-daniel-mueller 2024-03-25
cat.clim.stats.all <-
  cat.clim.stats.all %>%
  select(-n) %>%
  mutate(lon = if_else(lon > 180,
                       lon - 360,
                       lon))
  
cat.clim.stats.all %>%
  write_csv(paste0(path_out, "/2023_mhw_days_cumulative_threshold.csv"))



# convert from tibble to stars object

cat.clim.stats.all_stars <- st_as_stars(
  cat.clim.stats.all %>% rename(mhw_days = n_cum),
  dims = c("lon", "lat", "category")
)

# assign coordinate system to horizontal (lon, lat) coordinates
# st_crs(cat.clim.stats.all_stars) <- "+proj=longlat"
st_crs(cat.clim.stats.all_stars) <- st_crs(4326)

# plot variable per depth level
ggplot() +
  geom_stars(data = cat.clim.stats.all_stars) +
  facet_wrap( ~ category) +
  scale_fill_viridis_c(
    option = "magma",
    direction = -1,
    limits = c(0, 365),
    name = "Days"
  )


file_out <- paste0(path_out, "/2023_mhw_days_cumulative_threshold.nc")

# write stars object to .nc file
cat.clim.stats.all_stars %>%
  write_mdim(file_out)



# reopen .nc file with all available stars functions
cat.clim.stats.all_read_ncdf <-
  read_ncdf(file_out)
cat.clim.stats.all_read_mdim <-
  read_mdim(file_out)

# plot variable in object reopened

ggplot() +
  geom_stars(data = cat.clim.stats.all_read_ncdf) +
  facet_wrap( ~ category) +
  scale_fill_viridis_c(
    option = "magma",
    direction = -1,
    limits = c(0, 365),
    name = "Days"
  )

ggplot() +
  geom_stars(data = cat.clim.stats.all_read_mdim) +
  facet_wrap( ~ category) +
  scale_fill_viridis_c(
    option = "magma",
    direction = -1,
    limits = c(0, 365),
    name = "Days"
  )

Annual mean intensity

cat.clim.intensity <-
  cat.clim %>%
  group_by(lon, lat, category) %>% 
  summarise(intensity_sum = sum(intensity),
            intensity = mean(intensity)) %>% 
  ungroup()

map +
  geom_raster(data =
              cat.clim.intensity, aes(lon, lat, fill = intensity)) +
  scale_fill_viridis_c(option = "rocket",
                       direction = -1,
                       name = "Intensity (°C)") +
  labs(title = "Annual mean intensity per category in 2023") +
  facet_wrap(~ category, ncol = 1)

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
430e926 jens-daniel-mueller 2024-07-10
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
b49e6d3 jens-daniel-mueller 2024-03-25
63cf3cb jens-daniel-mueller 2024-03-25
95837a3 jens-daniel-mueller 2024-03-25

Annual cummulative intensity

Per category

map +
  geom_raster(data =
              cat.clim.intensity, aes(lon, lat, fill = intensity_sum)) +
  scale_fill_viridis_c(option = "rocket",
                       direction = -1,
                       name = "Intensity sum\n(days °C)") +
  labs(title = "Annual cummulative intensity per category in 2023",
       subtitle = "Computed from daily cat.clim.2023 files") +
  facet_wrap(~ category, ncol = 1)

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
430e926 jens-daniel-mueller 2024-07-10
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
9bfb3c6 jens-daniel-mueller 2024-03-25

All categories

map +
  geom_raster(
    data =
      cat.clim.intensity %>%
      group_by(lon, lat) %>%
      summarise(intensity_sum = sum(intensity_sum)) %>%
      ungroup(),
    aes(lon, lat, fill = intensity_sum)
  ) +
  scale_fill_viridis_c(option = "rocket",
                       direction = -1,
                       name = "Intensity sum\n(days °C)") +
  labs(title = "Annual cummulative intensity in 2023",
       subtitle = "Computed from daily cat.clim.2023 files")

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
430e926 jens-daniel-mueller 2024-07-10
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
9bfb3c6 jens-daniel-mueller 2024-03-25
map +
  geom_raster(data =
              MHW_cat_pixel_2023 %>% ungroup(),
            aes(lon, lat, fill = intensity_sum)) +
  scale_fill_viridis_c(option = "rocket",
                       direction = -1,
                       name = "Intensity sum\n(days °C)") +
  labs(title = "Annual cummulative intensity in 2023",
       subtitle = "Computed from MHW_cat_pixel_2023")

Version Author Date
334ff26 jens-daniel-mueller 2024-07-10
430e926 jens-daniel-mueller 2024-07-10
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
9bfb3c6 jens-daniel-mueller 2024-03-25

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] stars_0.6-0         abind_1.4-5         lubridate_1.9.0    
 [4] timechange_0.1.1    terra_1.7-65        sf_1.0-9           
 [7] rnaturalearth_0.1.0 geomtextpath_0.1.1  colorspace_2.0-3   
[10] marelac_2.1.10      shape_1.4.6         ggforce_0.4.1      
[13] metR_0.13.0         scico_1.3.1         patchwork_1.1.2    
[16] collapse_1.8.9      forcats_0.5.2       stringr_1.5.0      
[19] dplyr_1.1.3         purrr_1.0.2         readr_2.1.3        
[22] tidyr_1.3.0         tibble_3.2.1        ggplot2_3.4.4      
[25] tidyverse_1.3.2     workflowr_1.7.0    

loaded via a namespace (and not attached):
 [1] googledrive_2.0.0       ellipsis_0.3.2          class_7.3-20           
 [4] rprojroot_2.0.3         fs_1.5.2                rstudioapi_0.15.0      
 [7] proxy_0.4-27            farver_2.1.1            bit64_4.0.5            
[10] fansi_1.0.3             xml2_1.3.3              codetools_0.2-18       
[13] cachem_1.0.6            knitr_1.41              polyclip_1.10-4        
[16] jsonlite_1.8.3          gsw_1.1-1               broom_1.0.5            
[19] dbplyr_2.2.1            compiler_4.2.2          httr_1.4.4             
[22] backports_1.4.1         assertthat_0.2.1        fastmap_1.1.0          
[25] gargle_1.2.1            cli_3.6.1               later_1.3.0            
[28] tweenr_2.0.2            htmltools_0.5.3         tools_4.2.2            
[31] rnaturalearthdata_0.1.0 gtable_0.3.1            glue_1.6.2             
[34] Rcpp_1.0.11             cellranger_1.1.0        jquerylib_0.1.4        
[37] vctrs_0.6.4             lwgeom_0.2-10           xfun_0.35              
[40] ps_1.7.2                rvest_1.0.3             lifecycle_1.0.3        
[43] googlesheets4_1.0.1     oce_1.7-10              getPass_0.2-2          
[46] MASS_7.3-58.1           scales_1.2.1            vroom_1.6.0            
[49] hms_1.1.2               promises_1.2.0.1        parallel_4.2.2         
[52] yaml_2.3.6              memoise_2.0.1           sass_0.4.4             
[55] stringi_1.7.8           highr_0.9               e1071_1.7-12           
[58] checkmate_2.1.0         rlang_1.1.1             pkgconfig_2.0.3        
[61] systemfonts_1.0.4       evaluate_0.18           lattice_0.20-45        
[64] SolveSAPHE_2.1.0        labeling_0.4.2          bit_4.0.5              
[67] processx_3.8.0          tidyselect_1.2.0        here_1.0.1             
[70] seacarb_3.3.1           magrittr_2.0.3          R6_2.5.1               
[73] generics_0.1.3          DBI_1.1.3               pillar_1.9.0           
[76] haven_2.5.1             whisker_0.4             withr_2.5.0            
[79] units_0.8-0             sp_1.5-1                modelr_0.1.10          
[82] crayon_1.5.2            KernSmooth_2.23-20      utf8_1.2.2             
[85] tzdb_0.3.0              rmarkdown_2.18          grid_4.2.2             
[88] readxl_1.4.1            data.table_1.14.6       callr_3.7.3            
[91] git2r_0.30.1            reprex_2.0.2            digest_0.6.30          
[94] classInt_0.4-8          httpuv_1.6.6            textshaping_0.3.6      
[97] munsell_0.5.0           viridisLite_0.4.1       bslib_0.4.1