Last updated: 2024-07-10

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 334ff26. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data
    Ignored:    output/

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/atm_co2.Rmd) and HTML (docs/atm_co2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 334ff26 jens-daniel-mueller 2024-07-10 manual commit
html 430e926 jens-daniel-mueller 2024-07-10 manual commit
html caec400 jens-daniel-mueller 2024-06-13 Build site.
html 3148fef jens-daniel-mueller 2024-06-13 Build site.
html a60be97 jens-daniel-mueller 2024-06-12 Build site.
html d46002d jens-daniel-mueller 2024-06-12 manual commit
html 03c415f jens-daniel-mueller 2024-06-11 Build site.
html 5261667 jens-daniel-mueller 2024-06-11 manual commit
html 2b34bf8 jens-daniel-mueller 2024-06-11 manual commit
html 6954c65 jens-daniel-mueller 2024-06-06 Build site.
html 009791f jens-daniel-mueller 2024-05-14 Build site.
html 7f9c687 jens-daniel-mueller 2024-04-23 Build site.
html ce4e2a6 jens-daniel-mueller 2024-04-17 Build site.
Rmd 6b3a080 jens-daniel-mueller 2024-04-17 rebuild entire website with NRT_fco2residual
html 58e3680 jens-daniel-mueller 2024-04-11 Build site.
html dfcf790 jens-daniel-mueller 2024-04-11 Build site.
html 139bc97 jens-daniel-mueller 2024-04-11 manual deletion of files
html 69dc18c jens-daniel-mueller 2024-04-04 Build site.
html c9d994c jens-daniel-mueller 2024-04-04 Build site.
html 40cb158 jens-daniel-mueller 2024-04-03 Build site.
html a83c8fc jens-daniel-mueller 2024-04-03 Build site.
html 6bb7ce2 jens-daniel-mueller 2024-03-25 Build site.
html 4589270 jens-daniel-mueller 2024-03-24 Build site.
html 62ea4dd jens-daniel-mueller 2024-03-24 Build site.
html 1a5167d jens-daniel-mueller 2024-03-24 Build site.
html 934da22 jens-daniel-mueller 2024-03-22 Build site.
html ae4041c jens-daniel-mueller 2024-03-22 Build site.
html dc2068e jens-daniel-mueller 2024-03-22 Build site.
html 47238da jens-daniel-mueller 2024-03-21 Build site.
html 83fcd67 jens-daniel-mueller 2024-03-21 Build site.
html 342018b jens-daniel-mueller 2024-03-20 Build site.
html 8698b51 jens-daniel-mueller 2024-03-20 Build site.
html 03321bd jens-daniel-mueller 2024-03-19 Build site.
html de8f158 jens-daniel-mueller 2024-03-19 Build site.
Rmd 0fb4008 jens-daniel-mueller 2024-03-19 relative path
html b41fa51 jens-daniel-mueller 2024-03-19 Build site.
Rmd e492444 jens-daniel-mueller 2024-03-19 correct knit root folder
html bd3c1fe jens-daniel-mueller 2024-03-19 Build site.
html 5c97a86 jens-daniel-mueller 2024-03-19 Build site.
html 604281a jens-daniel-mueller 2024-03-19 Build site.
html 14a6ce5 jens-daniel-mueller 2024-03-19 Build site.
html d3f3f52 jens-daniel-mueller 2024-03-18 Build site.
html 2b04797 jens-daniel-mueller 2024-03-18 Build site.
html 426fd51 jens-daniel-mueller 2024-03-15 Build site.
html 1f85de2 jens-daniel-mueller 2024-03-15 Build site.
html fc68c94 jens-daniel-mueller 2024-03-15 Build site.
html 85c6275 jens-daniel-mueller 2024-03-15 Build site.
html 2e0907d jens-daniel-mueller 2024-03-14 Build site.
html 7a258b9 jens-daniel-mueller 2024-03-14 Build site.
html baf5167 jens-daniel-mueller 2024-03-14 Build site.
html 5ae6c32 jens-daniel-mueller 2024-03-14 Build site.
html 4eb2ea7 jens-daniel-mueller 2024-03-14 Build site.
html f1a1ba8 jens-daniel-mueller 2024-03-13 Build site.
html a91341f jens-daniel-mueller 2024-03-13 Build site.
html 86b52e9 jens-daniel-mueller 2024-03-13 Build site.
html 1e3279c jens-daniel-mueller 2024-03-12 Build site.
html ff205b8 jens-daniel-mueller 2024-03-12 Build site.
html e760672 jens-daniel-mueller 2024-03-12 Build site.
html caeb7f1 jens-daniel-mueller 2024-03-12 Build site.
html b6c0bec jens-daniel-mueller 2024-03-12 Build site.
html 3f69dc8 jens-daniel-mueller 2024-03-12 Build site.
html 0473a50 jens-daniel-mueller 2024-03-12 Build site.
html f3b86fa jens-daniel-mueller 2024-03-12 Build site.
html 3f11106 jens-daniel-mueller 2024-03-12 Build site.
html cfe3967 jens-daniel-mueller 2024-03-11 Build site.
html 45a623c jens-daniel-mueller 2024-03-11 Build site.
Rmd f4af74f jens-daniel-mueller 2024-03-11 started pCO2 products analysis
html 41d435b jens-daniel-mueller 2024-03-11 Build site.
Rmd 8ac0750 jens-daniel-mueller 2024-03-11 included setup source functions
html 581fb88 jens-daniel-mueller 2024-03-08 Build site.
Rmd af44790 jens-daniel-mueller 2024-03-08 atm co2 2023 prediction
html a2ce6d8 jens-daniel-mueller 2024-03-07 Build site.
Rmd 36de8c8 jens-daniel-mueller 2024-03-07 atm co2 2023 prediction
html 5ac6300 jens-daniel-mueller 2024-03-07 Build site.
Rmd dda379e jens-daniel-mueller 2024-03-07 atm co2 data added
html 7d24a99 jens-daniel-mueller 2024-03-07 Build site.
html a9267cc jens-daniel-mueller 2024-03-07 Build site.
Rmd 694c584 jens-daniel-mueller 2024-03-07 added atm co2

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Read data

co2_mm_gl <- read_csv("../data/co2_mm_gl.csv", 
    skip = 38)

global_co2_merged <- read_table("../data/global_co2_merged.txt", 
    comment = "!",
    col_names = c("decimal", "average"))


atm_co2 <-
  bind_rows(
    co2_mm_gl %>%
      select(decimal, average) %>%
      mutate(source = "NOAA - Global marine surface"),
    global_co2_merged %>%
      mutate(source = "GCB - MLO & SPO")
  )

atm_co2 <- 
atm_co2 %>% 
  mutate(date = date_decimal(decimal),
         year = year(date),
         month = month(date))
co2_surface <- read_table(here::here("data/input/atm_co2/co2_GHGreference.767706493_surface.txt"), 
    col_names = FALSE, skip = 76)

co2_surface <-
  co2_surface[c(1, seq(2, 83, 2))]

names(co2_surface) <- c("time",
                        as.character(seq(-1, 1, 0.05)))

# conversion to degrees latitude
# 180/pi * asin(-1)

co2_surface <-
  co2_surface %>%
  pivot_longer(-time,
               names_to = "lat",
               values_to = "xco2")

co2_surface <-
  co2_surface %>%
  mutate(lat = as.numeric(lat))

co2_surface %>% 
  filter(time > 2010) %>% 
  ggplot(aes(time, lat, fill = xco2)) +
  geom_tile() +
  scale_fill_viridis_c(option = "magma") +
  # scale_y_continuous(sec.axis = sec_axis(~ sin(.))) +
  coord_cartesian(expand = 0)



surface_mbl <- read_table("data/input/atm_co2/surface.mbl.co2", 
    col_names = FALSE)

names(surface_mbl) <- c("time",
                        as.character(seq(-1, 1, 0.05)))

# conversion to degrees latitude
# 180/pi * asin

surface_mbl <-
  surface_mbl %>%
  pivot_longer(-time,
               names_to = "lat",
               values_to = "xco2")

surface_mbl <-
  surface_mbl %>%
  mutate(lat = as.numeric(lat))

surface_mbl %>% 
  filter(time > 2010) %>% 
  ggplot(aes(time, lat, fill = xco2)) +
  geom_tile() +
  scale_fill_viridis_c(option = "magma") +
  coord_cartesian(expand = 0)

co2_merge <- 
bind_rows(co2_surface %>% mutate(product = "website"),
          surface_mbl %>% mutate(product = "preliminary"))

co2_merge %>%
  filter(time > 2010) %>%
  ggplot(aes(time, lat, fill = xco2)) +
  geom_tile() +
  scale_fill_viridis_c(option = "magma") +
  coord_cartesian(expand = 0) +
  facet_wrap(~ product, ncol = 1)

library(colorspace)

co2_merge_delta <-
co2_merge %>%
  pivot_wider(names_from = product,
              values_from = xco2) %>% 
  mutate(delta_xco2 = preliminary - website) %>% 
  filter(!is.na(delta_xco2))

co2_merge_delta %>% 
  filter(time > 2010) %>%
  ggplot(aes(time, lat, fill = delta_xco2)) +
  geom_tile() +
  scale_fill_divergent() +
  scale_x_continuous(breaks = seq(1900,2100,5)) +
  coord_cartesian(expand = 0)

library(khroma)
co2_merge_delta %>%
  mutate(lat = cut(lat,sin(c(-90,seq(-75,75,30),90)/180*pi))) %>% 
  group_by(lat, time) %>%
  summarise(delta_xco2 = mean(delta_xco2, na.rm = TRUE)) %>% 
  ungroup() %>% 
  # filter(time > 2010) %>%
  ggplot(aes(time, delta_xco2, col = lat)) +
  geom_path() +
  scale_color_bright() +
  coord_cartesian(expand = 0)
atm_co2 %>% 
  filter(decimal > 2010) %>% 
  ggplot(aes(decimal, average, col = source)) +
  geom_path() +
  geom_point() +
  labs(y = expression(Atm.~CO[2]~(ppm))) +
  geom_smooth(method = "lm", se = FALSE) +
  scale_color_okabeito() +
  theme_bw() +
  scale_x_continuous(breaks = seq(1900,2100,2)) +
  theme(axis.title.x = element_blank(),
        legend.title = element_blank(),
        legend.position = c(0.8,0.2))

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
5ac6300 jens-daniel-mueller 2024-03-07
atm_co2 <-
  atm_co2 %>%
  filter(year < 2023 | source != "GCB - MLO & SPO")

atm_co2 <-
  atm_co2 %>%
  group_by(year, source) %>%
  mutate(annual_mean = mean(average)) %>%
  ungroup() %>%
  mutate(monthly_anomaly = average - annual_mean)

atm_co2 %>% 
  filter(decimal > 2013,
         decimal < 2023) %>%
  ggplot(aes(month, monthly_anomaly, col = source, group = interaction(source, year))) +
  geom_path() +
  geom_point() +
  labs(y = expression(Monthly~anomaly~from~annual~mean~(ppm)),
       title = expression(Atmospheric~CO[2]~seasonality),
       subtitle = "2013 - 2022") +
  scale_color_manual(values = c("#000000", "#E69F00", "#56B4E9")) +
  theme_bw() +
  scale_x_continuous(breaks = seq(1,12,1), expand = c(0.01,0)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.3,0.2))

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
581fb88 jens-daniel-mueller 2024-03-08
a2ce6d8 jens-daniel-mueller 2024-03-07
ggsave(
  here::here(
    paste0(
      "output/atm_CO2_seasonality.png"
    )
  ),
  width = 6,
  height = 4,
  dpi = 600,
  bg = "white"
)


atm_co2 %>% 
  filter(decimal > 1980,
         decimal < 2023) %>% 
  ggplot(aes(month, monthly_anomaly, group = interaction(year), col = year)) +
  geom_path() +
  geom_point() +
  labs(y = expression(Monthly~anomaly~atm.~CO[2]~(ppm))) +
  scale_color_viridis_c() +
  theme_bw() +
  scale_x_continuous(breaks = seq(1,12,3)) +
  facet_wrap(~ source) +
  theme(legend.title = element_blank())

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
a2ce6d8 jens-daniel-mueller 2024-03-07
atm_co2_monthly_anomaly <-
  atm_co2 %>%
  filter(decimal > 2013,
         decimal < 2023) %>%
  group_by(source, month) %>%
  summarise(monthly_anomaly = mean(monthly_anomaly),
            decimal_mean = mean(decimal - year)) %>%
  ungroup()


atm_co2_annual_means <-
  atm_co2 %>%
  group_by(source, year) %>%
  summarise(annual_mean = mean(average)) %>%
  ungroup()

atm_co2_annual_means %>% 
  filter(year >= 2013,
         year <= 2022) %>% 
  group_by(source) %>%
  summarise(long_term_mean = mean(annual_mean)) %>%
  ungroup() %>% 
  pull(long_term_mean)
[1] 405.7722 406.2577
annual_mean_2023_predicted <-
  atm_co2 %>%
  filter(decimal > 2013,
         decimal < 2023) %>%
  group_by(source, year) %>%
  summarise(annual_mean = mean(average)) %>%
  ungroup() %>%
  nest(data = -source) %>%
  mutate(fit = map(data, ~ lm(annual_mean ~ year, data = .x)),
         tidied = map(fit, tidy)) %>%
  unnest(tidied) %>%
  select(source, term, estimate) %>%
  pivot_wider(names_from = term,
              values_from = estimate) %>%
  mutate(annual_mean = `(Intercept)` + year * 2023) %>%
  filter(source == "GCB - MLO & SPO") %>%
  pull(annual_mean)

  
atm_co2_monthly_anomaly <-
  atm_co2_monthly_anomaly %>%
  filter(source == "GCB - MLO & SPO") %>%
  mutate(
    year = 2023,
    decimal = year + decimal_mean,
    annual_mean = annual_mean_2023_predicted,
    average =  annual_mean + monthly_anomaly,
    source = "GCB - MLO & SPO (linear prediction)",
    date = date_decimal(decimal)
  ) %>%
  select(-decimal_mean)


atm_co2_predicted <-
  bind_rows(atm_co2 %>% filter(year < 2023 |
                                 source != "GCB - MLO & SPO"),
            atm_co2_monthly_anomaly)

atm_co2_annual_means %>% 
  filter(year > 2021)
# A tibble: 3 × 3
  source                        year annual_mean
  <chr>                        <dbl>       <dbl>
1 GCB - MLO & SPO               2022        416.
2 NOAA - Global marine surface  2022        417.
3 NOAA - Global marine surface  2023        419.
atm_co2_predicted %>% 
  filter(decimal > 2013) %>% 
  ggplot() +
  geom_path(aes(decimal, average, col = source)) +
  geom_point(aes(decimal, average, col = source)) +
  geom_path(aes(decimal, annual_mean, col = source, group = interaction(source, year),
                linetype = "annual mean")) +
  scale_linetype_manual(values = 2) +
  labs(y = expression(CO[2]~(ppm)),
       title = expression(Atmospheric~CO[2]~timeseries),
       subtitle = "2013 - 2022") +
  scale_color_manual(values = c("#000000", "#56B4E9", "#E69F00")) +
  theme_bw() +
  scale_x_continuous(breaks = seq(1900,2100,2), expand = c(0.01,0)) +
  theme(axis.title.x = element_blank(),
        legend.title = element_blank(),
        legend.position = c(0.3,0.7))

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
581fb88 jens-daniel-mueller 2024-03-08
a2ce6d8 jens-daniel-mueller 2024-03-07
ggsave(
  here::here(
    paste0(
      "output/atm_CO2_timeseries.png"
    )
  ),
  width = 6,
  height = 4,
  dpi = 600,
  bg = "white"
)

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] broom_1.0.5         khroma_1.9.0        lubridate_1.9.0    
 [4] timechange_0.1.1    terra_1.7-65        sf_1.0-9           
 [7] rnaturalearth_0.1.0 geomtextpath_0.1.1  colorspace_2.0-3   
[10] marelac_2.1.10      shape_1.4.6         ggforce_0.4.1      
[13] metR_0.13.0         scico_1.3.1         patchwork_1.1.2    
[16] collapse_1.8.9      forcats_0.5.2       stringr_1.5.0      
[19] dplyr_1.1.3         purrr_1.0.2         readr_2.1.3        
[22] tidyr_1.3.0         tibble_3.2.1        ggplot2_3.4.4      
[25] tidyverse_1.3.2     workflowr_1.7.0    

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0       ellipsis_0.3.2          class_7.3-20           
  [4] rprojroot_2.0.3         fs_1.5.2                rstudioapi_0.15.0      
  [7] proxy_0.4-27            farver_2.1.1            bit64_4.0.5            
 [10] fansi_1.0.3             xml2_1.3.3              splines_4.2.2          
 [13] codetools_0.2-18        cachem_1.0.6            knitr_1.41             
 [16] polyclip_1.10-4         jsonlite_1.8.3          gsw_1.1-1              
 [19] dbplyr_2.2.1            compiler_4.2.2          httr_1.4.4             
 [22] backports_1.4.1         Matrix_1.5-3            assertthat_0.2.1       
 [25] fastmap_1.1.0           gargle_1.2.1            cli_3.6.1              
 [28] later_1.3.0             tweenr_2.0.2            htmltools_0.5.3        
 [31] tools_4.2.2             rnaturalearthdata_0.1.0 gtable_0.3.1           
 [34] glue_1.6.2              Rcpp_1.0.11             cellranger_1.1.0       
 [37] jquerylib_0.1.4         vctrs_0.6.4             nlme_3.1-160           
 [40] xfun_0.35               ps_1.7.2                rvest_1.0.3            
 [43] lifecycle_1.0.3         googlesheets4_1.0.1     oce_1.7-10             
 [46] getPass_0.2-2           MASS_7.3-58.1           scales_1.2.1           
 [49] vroom_1.6.0             ragg_1.2.4              hms_1.1.2              
 [52] promises_1.2.0.1        parallel_4.2.2          yaml_2.3.6             
 [55] memoise_2.0.1           sass_0.4.4              stringi_1.7.8          
 [58] highr_0.9               e1071_1.7-12            checkmate_2.1.0        
 [61] rlang_1.1.1             pkgconfig_2.0.3         systemfonts_1.0.4      
 [64] evaluate_0.18           lattice_0.20-45         SolveSAPHE_2.1.0       
 [67] labeling_0.4.2          bit_4.0.5               processx_3.8.0         
 [70] tidyselect_1.2.0        here_1.0.1              seacarb_3.3.1          
 [73] magrittr_2.0.3          R6_2.5.1                generics_0.1.3         
 [76] DBI_1.1.3               mgcv_1.8-41             pillar_1.9.0           
 [79] haven_2.5.1             whisker_0.4             withr_2.5.0            
 [82] units_0.8-0             sp_1.5-1                modelr_0.1.10          
 [85] crayon_1.5.2            KernSmooth_2.23-20      utf8_1.2.2             
 [88] tzdb_0.3.0              rmarkdown_2.18          grid_4.2.2             
 [91] readxl_1.4.1            data.table_1.14.6       callr_3.7.3            
 [94] git2r_0.30.1            reprex_2.0.2            digest_0.6.30          
 [97] classInt_0.4-8          httpuv_1.6.6            textshaping_0.3.6      
[100] munsell_0.5.0           viridisLite_0.4.1       bslib_0.4.1