Last updated: 2024-09-26

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 825ac32. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data
    Ignored:    output/

Unstaged changes:
    Modified:   analysis/child/pCO2_product_analysis.Rmd
    Modified:   analysis/child/pCO2_product_synopsis.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SOM_FFN.Rmd) and HTML (docs/SOM_FFN.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 825ac32 jens-daniel-mueller 2024-09-26 Build site.
html e827817 jens-daniel-mueller 2024-09-09 Build site.
html f220529 jens-daniel-mueller 2024-08-22 Build site.
html 4f019e4 jens-daniel-mueller 2024-07-11 Build site.
html 334ff26 jens-daniel-mueller 2024-07-10 manual commit
Rmd 71d9d10 jens-daniel-mueller 2024-07-10 manual commit
html 430e926 jens-daniel-mueller 2024-07-10 manual commit
html c858f57 jens-daniel-mueller 2024-07-01 Build site.
html f1954bc jens-daniel-mueller 2024-06-27 Build site.
html 8b8904a jens-daniel-mueller 2024-06-26 Build site.
html 5634f7f jens-daniel-mueller 2024-06-26 Build site.
Rmd 1acd7b1 jens-daniel-mueller 2024-06-26 cleaned
html bd4df91 jens-daniel-mueller 2024-06-13 Build site.
html 6433789 jens-daniel-mueller 2024-06-13 Build site.
html 3148fef jens-daniel-mueller 2024-06-13 Build site.
html c0642e2 jens-daniel-mueller 2024-06-12 Build site.
html a60be97 jens-daniel-mueller 2024-06-12 Build site.
html 67f79ca jens-daniel-mueller 2024-06-12 Build site.
html 4de1802 jens-daniel-mueller 2024-06-12 Build site.
Rmd 49b7828 jens-daniel-mueller 2024-06-12 removed unnecessary analysis
html bc2711d jens-daniel-mueller 2024-06-12 Build site.
html d46002d jens-daniel-mueller 2024-06-12 manual commit
html f4a8ec9 jens-daniel-mueller 2024-06-12 Build site.
html b154a83 jens-daniel-mueller 2024-06-12 Build site.
html e3748fc jens-daniel-mueller 2024-06-11 Build site.
html 5261667 jens-daniel-mueller 2024-06-11 manual commit
html f8eeceb jens-daniel-mueller 2024-06-11 manual commit
html 54a9740 jens-daniel-mueller 2024-06-11 Build site.
html 3a18397 jens-daniel-mueller 2024-06-11 Build site.
html 2b34bf8 jens-daniel-mueller 2024-06-11 manual commit
html 5e77ff9 jens-daniel-mueller 2024-06-11 Build site.
html f02da4d jens-daniel-mueller 2024-06-11 Build site.
html 97c6e98 jens-daniel-mueller 2024-06-11 Build site.
html 26805fd jens-daniel-mueller 2024-06-11 Build site.
html da0b483 jens-daniel-mueller 2024-06-11 Build site.
html 6954c65 jens-daniel-mueller 2024-06-06 Build site.
html e1e0ccb jens-daniel-mueller 2024-05-27 Build site.
html a3743ec jens-daniel-mueller 2024-05-25 Build site.
html a8fa6b2 jens-daniel-mueller 2024-05-24 Build site.
html c46133d jens-daniel-mueller 2024-05-23 Build site.
Rmd 305b932 jens-daniel-mueller 2024-05-23 testrun with read 3D ocean interior fields
html be285dc jens-daniel-mueller 2024-05-21 Build site.
html 51df30d jens-daniel-mueller 2024-05-15 Build site.
html 909f6c8 jens-daniel-mueller 2024-05-14 Build site.
Rmd 7239946 jens-daniel-mueller 2024-05-14 updated seasonality plots
html 009791f jens-daniel-mueller 2024-05-14 Build site.
html 3b5d16b jens-daniel-mueller 2024-05-13 Build site.
Rmd 1e1dee5 jens-daniel-mueller 2024-05-13 pco2 to fco2 conversions, changed output files
html 8c96de4 jens-daniel-mueller 2024-05-08 Build site.
html 79ef4f3 jens-daniel-mueller 2024-05-08 Build site.
html b0129aa jens-daniel-mueller 2024-04-23 Build site.
Rmd 39cbcef jens-daniel-mueller 2024-04-23 final atm CO2 MBL used
html 7f9c687 jens-daniel-mueller 2024-04-23 Build site.
html ce4e2a6 jens-daniel-mueller 2024-04-17 Build site.
html 741ee62 jens-daniel-mueller 2024-04-17 Build site.
html 58e3680 jens-daniel-mueller 2024-04-11 Build site.
html dfcf790 jens-daniel-mueller 2024-04-11 Build site.
html 139bc97 jens-daniel-mueller 2024-04-11 manual deletion of files
html 2321242 jens-daniel-mueller 2024-04-11 Build site.
Rmd d98842b jens-daniel-mueller 2024-04-10 fixed anomaly year output
html 2793f67 jens-daniel-mueller 2024-04-05 Build site.
html 69dc18c jens-daniel-mueller 2024-04-04 Build site.
html c9d994c jens-daniel-mueller 2024-04-04 Build site.
Rmd 46f044d jens-daniel-mueller 2024-04-04 rebuild entire website with individual anomaly years
Rmd 9d258b5 jens-daniel-mueller 2024-04-03 manual commit
html 3a9a60f jens-daniel-mueller 2024-03-29 Build site.
html 3946ecd jens-daniel-mueller 2024-03-27 Build site.
html 6343e59 jens-daniel-mueller 2024-03-27 Build site.
Rmd aba8ff0 jens-daniel-mueller 2024-03-27 input variables modified
html 1546f6d jens-daniel-mueller 2024-03-27 Build site.
Rmd 04839cc jens-daniel-mueller 2024-03-27 input variables added
html 6bb7ce2 jens-daniel-mueller 2024-03-25 Build site.
html f9d2b99 jens-daniel-mueller 2024-03-25 total cummulative intensity added
html 3114859 jens-daniel-mueller 2024-03-25 Build site.
html 4589270 jens-daniel-mueller 2024-03-24 Build site.
html 62ea4dd jens-daniel-mueller 2024-03-24 Build site.
html 1a5167d jens-daniel-mueller 2024-03-24 Build site.
html 934da22 jens-daniel-mueller 2024-03-22 Build site.
html ae4041c jens-daniel-mueller 2024-03-22 Build site.
html dc2068e jens-daniel-mueller 2024-03-22 Build site.
html 98cf341 jens-daniel-mueller 2024-03-21 Build site.
html e3e1491 jens-daniel-mueller 2024-03-21 Build site.
html 47238da jens-daniel-mueller 2024-03-21 Build site.
html 83fcd67 jens-daniel-mueller 2024-03-21 Build site.
html 342018b jens-daniel-mueller 2024-03-20 Build site.
html 8698b51 jens-daniel-mueller 2024-03-20 Build site.
Rmd 39d9769 jens-daniel-mueller 2024-03-20 write summary output files
html 03321bd jens-daniel-mueller 2024-03-19 Build site.
Rmd e80f0d8 jens-daniel-mueller 2024-03-19 units fixed
html b41fa51 jens-daniel-mueller 2024-03-19 Build site.
html bd3c1fe jens-daniel-mueller 2024-03-19 Build site.
Rmd fbfd936 jens-daniel-mueller 2024-03-19 run pco2 products with child document

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Read data

path_pCO2_products <-
  "/nfs/kryo/work/datasets/gridded/ocean/2d/observation/pco2/"
library(ncdf4)
nc <-
  nc_open(paste0(
    path_pCO2_products,
    "VLIZ-SOM_FFN/VLIZ-SOM_FFN_predict.nc"
  ))

print(nc)
pco2_product <-
  read_ncdf(
    paste0(
      path_pCO2_products,
      "VLIZ-SOM_FFN/VLIZ-SOM_FFN_predict.nc"
    ),
    var = c("dco2", "atm_co2", "sol", "kw", "spco2_smoothed", "fgco2_smoothed"),
    ignore_bounds = TRUE,
    make_units = FALSE
  )

pco2_product_input <-
  read_ncdf(
    paste0(
      path_pCO2_products,
      "VLIZ-SOM_FFN/VLIZ-SOM_FFN_inputs.nc"
    ),
    var = c("sst", "sss", "chl", "wind"),
    ignore_bounds = TRUE,
    make_units = FALSE
  )

pco2_product <- c(pco2_product, pco2_product_input)
rm(pco2_product_input)
  
pco2_product <- pco2_product %>%
  as_tibble()

pco2_product <-
  pco2_product %>%
  rename(spco2 = spco2_smoothed,
         fgco2 = fgco2_smoothed,
         salinity = sss,
         temperature = sst)

pco2_product <-
  pco2_product %>%
  mutate(across(-c(lon, lat, time), ~ replace(., . >= 1e+19, NA)))

pco2_product <-
  pco2_product %>%
  mutate(area = earth_surf(lat, lon),
         year = year(time),
         month = month(time))

pco2_product <-
  pco2_product %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon),
         wind = sqrt(wind))

pco2_product <-
  pco2_product %>%
  mutate(
    sfco2 = p2fCO2(T = temperature,
                   pCO2 = spco2),
    atm_fco2 = p2fCO2(T = temperature,
                      pCO2 = atm_co2),
    dfco2 = sfco2 - atm_fco2
  )

pco2_product <-
  pco2_product %>% 
  mutate(kw_sol = kw * sol)

pco2_product <-
  pco2_product %>%
  select(-c(dco2, atm_co2, spco2, kw, sol))
pCO2_product_preprocessing <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_preprocessing.Rmd"),
    product_name = "SOM-FFN"
  )

Preprocessing

# model <- TRUE
model <- str_detect('SOM-FFN', "FESOM-REcoM|ETHZ-CESM")

Load masks

biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))

region_mask <-
  read_rds(here::here("data/region_mask.rds"))

map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

Define labels and breaks

labels_breaks <- function(i_name) {
  
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub><br>(µatm)"
  }
  
  if (i_name == "dfco2") {
    i_legend_title <- "ΔfCO<sub>2</sub><br>(µatm)"
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub><br>(µatm)"
  }
  
  if (i_name == "atm_fco2") {
    i_legend_title <- "fCO<sub>2,atm</sub><br>(µatm)"
  }
  
  if (i_name == "sol") {
    i_legend_title <- "K<sub>0</sub><br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
  }
  
  if (i_name == "kw") {
    i_legend_title <- "k<sub>w</sub><br>(m yr<sup>-1</sup>)"
  }
  
  if (i_name == "kw_sol") {
    i_legend_title <- "k<sub>w</sub> K<sub>0</sub><br>(mol yr<sup>-1</sup> m<sup>-2</sup> µatm<sup>-1</sup>)"
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub><br>(µatm)"
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub><br>(µatm)"
  }
  
  if (i_name == "intpp") {
    i_legend_title <- "NPP<sub>int</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
  }

  if (i_name == "no3") {
    i_legend_title <- "NO<sub>3</sub><br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "o2") {
    i_legend_title <- "O<sub>2</sub><br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "dissic") {
    i_legend_title <- "DIC<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "sdissic") {
    i_legend_title <- "sDIC<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "cstar") {
    i_legend_title <- "C*<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "talk") {
    i_legend_title <- "TA<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "stalk") {
    i_legend_title <- "sTA<br>(μmol kg<sup>-1</sup>)"
  }
  
  
  if (i_name == "sdissic_stalk") {
    i_legend_title <- "sDIC-sTA<br>(μmol kg<sup>-1</sup>)"
  }
  
  if (i_name == "sfco2_total") {
    i_legend_title <- "total"
  }
  
  if (i_name == "sfco2_therm") {
    i_legend_title <- "thermal"
  }
  
  if (i_name == "sfco2_nontherm") {
    i_legend_title <- "non-thermal"
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC yr<sup>-1</sup>)"
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp.<br>(°C)"
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST<br>(°C)"
  }
  
  if (i_name == "salinity") {
    i_legend_title <- "SSS"
  }
  
  if (i_name == "so") {
    i_legend_title <- "salinity"
  }
  
  if (i_name == "chl") {
    i_legend_title <- "lg(Chl-a)<br>(lg(mg m<sup>-3</sup>))"
  }
  
  if (i_name == "mld") {
    i_legend_title <- "MLD<br>(m)"
  }
  
  if (i_name == "press") {
    i_legend_title <- "pressure<sub>atm</sub><br>(Pa)"
  }
  
  if (i_name == "wind") {
    i_legend_title <- "Wind <br>(m sec<sup>-1</sup>)"
  }
  
  if (i_name == "SSH") {
    i_legend_title <- "SSH <br>(m)"
  }
  
  if (i_name == "fice") {
    i_legend_title <- "Sea ice <br>(%)"
  }
  
    
  if (i_name == "resid_fgco2") {
    i_legend_title <-
      "Observed"
  }
    
  if (i_name == "resid_fgco2_dfco2") {
    i_legend_title <-
      "ΔfCO<sub>2</sub>"
  }
    
  if (i_name == "resid_fgco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub>"
  }
    
  if (i_name == "resid_fgco2_dfco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub> X ΔfCO<sub>2</sub>"
  }
    
  if (i_name == "resid_fgco2_sum") {
    i_legend_title <-
      "∑"
  }
    
  if (i_name == "resid_fgco2_offset") {
    i_legend_title <-
      "Obs. - ∑"
  }
  
  all_labels_breaks <- lst(i_legend_title)
  
  return(all_labels_breaks)
  
}

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "dfco2" = labels_breaks("dfco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "kw_sol" = labels_breaks("kw_sol")$i_legend_title,
    "intpp" = labels_breaks("intpp")$i_legend_title,
    "no3" = labels_breaks("no3")$i_legend_title,
    "o2" = labels_breaks("o2")$i_legend_title,
    "dissic" = labels_breaks("dissic")$i_legend_title,
    "sdissic" = labels_breaks("sdissic")$i_legend_title,
    "cstar" = labels_breaks("cstar")$i_legend_title,
    "talk" = labels_breaks("talk")$i_legend_title,
    "stalk" = labels_breaks("stalk")$i_legend_title,
    "sdissic_stalk" = labels_breaks("sdissic_stalk")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "sfco2_total" = labels_breaks("sfco2_total")$i_legend_title,
    "sfco2_therm" = labels_breaks("sfco2_therm")$i_legend_title,
    "sfco2_nontherm" = labels_breaks("sfco2_nontherm")$i_legend_title,
    "fgco2" = labels_breaks("fgco2")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "thetao" = labels_breaks("thetao")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title,
    "salinity" = labels_breaks("salinity")$i_legend_title,
    "so" = labels_breaks("so")$i_legend_title,
    "chl" = labels_breaks("chl")$i_legend_title,
    "mld" = labels_breaks("mld")$i_legend_title,
    "press" = labels_breaks("press")$i_legend_title,
    "wind" = labels_breaks("wind")$i_legend_title,
    "SSH" = labels_breaks("SSH")$i_legend_title,
    "fice" = labels_breaks("fice")$i_legend_title,
    "resid_fgco2" = labels_breaks("resid_fgco2")$i_legend_title,
    "resid_fgco2_dfco2" = labels_breaks("resid_fgco2_dfco2")$i_legend_title,
    "resid_fgco2_kw_sol" = labels_breaks("resid_fgco2_kw_sol")$i_legend_title,
    "resid_fgco2_dfco2_kw_sol" = labels_breaks("resid_fgco2_dfco2_kw_sol")$i_legend_title,
    "resid_fgco2_sum" = labels_breaks("resid_fgco2_sum")$i_legend_title,
    "resid_fgco2_offset" = labels_breaks("resid_fgco2_offset")$i_legend_title
  )

Analysis settings

name_quadratic_fit <- c("atm_co2", "atm_fco2", "spco2", "sfco2")

start_year <- 1990

name_divergent <- c("dco2", "dfco2", "fgco2", "fgco2_hov", "fgco2_int")

Data preprocessing

pco2_product <-
  pco2_product %>%
  filter(year >= start_year)
pco2_product_interior <-
  pco2_product_interior %>%
  filter(time >= ymd(paste0(start_year, "-01-01")))
biome_mask <- biome_mask %>% 
  mutate(area = earth_surf(lat, lon))

pco2_product <-
  full_join(pco2_product,
            biome_mask)

# set all values outside biome mask to NA

pco2_product <-
  pco2_product %>%
  mutate(across(-c(lat, lon, time, area, year, month, biome), 
                ~ if_else(is.na(biome), NA, .)))

Compuations

Maps

Biome means

pco2_product_biome_monthly_global <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>%
  mutate(fgco2_int = fgco2) %>%
  mutate(biome = case_when(str_detect(biome, "SO-SPSS|SO-ICE|Arctic") ~ "Polar",
                           TRUE ~ "Global non-polar")) %>%
  filter(biome == "Global non-polar") %>%
  select(-c(lon, lat, year, month)) %>%
  group_by(time, biome) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

pco2_product_biome_monthly_biome <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>% 
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, lat, year, month)) %>% 
  group_by(time, biome) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()


pco2_product_biome_monthly <-
  bind_rows(pco2_product_biome_monthly_global,
            pco2_product_biome_monthly_biome)

rm(
  pco2_product_biome_monthly_global,
  pco2_product_biome_monthly_biome
)


pco2_product_biome_monthly <-
  pco2_product_biome_monthly %>% 
  filter(!is.na(biome))

pco2_product_biome_monthly <-
  pco2_product_biome_monthly %>%
  mutate(year = year(time),
         month = month(time),
         .after = time)

pco2_product_biome_monthly <-
  pco2_product_biome_monthly %>%
  pivot_longer(-c(time, year, month, biome))


pco2_product_biome_annual <-
  pco2_product_biome_monthly %>%
  group_by(year, biome, name) %>%
  summarise(value = mean(value)) %>%
  ungroup()

Profiles

pco2_product_interior <- 
  left_join(
    biome_mask,
    pco2_product_interior
  )

pco2_product_profiles <- pco2_product_interior %>%
  fselect(-c(lat, lon)) %>%
  fgroup_by(biome, depth, time) %>% {
    add_vars(fgroup_vars(., "unique"),
             fmean(.,
                   w = area,
                   keep.w = FALSE,
                   keep.group_vars = FALSE))
  }

pco2_product_profiles <-
  pco2_product_profiles %>%
  mutate(
    year = year(time),
    month = month(time)
  )

gc()

Zonal mean sections

pco2_product_interior <- 
  left_join(
    region_mask,
    pco2_product_interior %>% select(-c(biome, area))
  )

pco2_product_zonal_mean <- pco2_product_interior %>%
  fselect(-c(lon)) %>%
  fgroup_by(region, depth, lat, time) %>% {
    add_vars(fgroup_vars(., "unique"),
             fmean(.,
                   keep.group_vars = FALSE))
  }

pco2_product_zonal_mean <-
  pco2_product_zonal_mean %>%
  mutate(
    year = year(time),
    month = month(time)
  )

gc()

rm(pco2_product_interior)
gc()

Absolute values

Hovmoeller plots

The following Hovmoeller plots show the value of each variable as provided through the pCO2 product. Hovmoeller plots are first presented as annual means, and than as monthly means.

Annual means

pco2_product_hovmoeller_annual <-
  pco2_product %>%
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, time, month, biome)) %>%
  group_by(year, lat) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2_int) %>% 
  filter(fgco2_hov != 0)

pco2_product_hovmoeller_annual <-
  pco2_product_hovmoeller_annual %>%
  pivot_longer(-c(year, lat)) %>% 
  drop_na()

# pco2_product_hovmoeller_annual %>%
#   filter(!(name %in% name_divergent)) %>% 
#   group_split(name) %>%
#   # tail(5) %>%
#   map(
#     ~ ggplot(data = .x,
#              aes(year, lat, fill = value)) +
#       geom_raster() +
#       scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
#       theme(legend.title = element_markdown()) +
#       coord_cartesian(expand = 0) +
#       labs(title = "Annual means",
#            y = "Latitude") +
#       theme(axis.title.x = element_blank())
#   )
# 
# pco2_product_hovmoeller_annual %>%
#   filter(name %in% name_divergent) %>% 
#   group_split(name) %>%
#   # head(1) %>%
#   map(
#     ~ ggplot(data = .x,
#              aes(year, lat, fill = value)) +
#       geom_raster() +
#       scale_fill_gradientn(
#         colours = cmocean("curl")(100),
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks(.x %>% distinct(name)),
#         limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
#         oob = squish
#       ) +
#       theme(legend.title = element_markdown()) +
#       coord_cartesian(expand = 0) +
#       labs(title = "Annual means",
#            y = "Latitude") +
#       theme(axis.title.x = element_blank())
#   )

Monthly means

pco2_product_hovmoeller_monthly <-
  pco2_product %>%
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, time, biome)) %>%
  group_by(year, month, lat) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2_int) %>% 
  filter(fgco2_hov != 0)


pco2_product_hovmoeller_monthly <-
  pco2_product_hovmoeller_monthly %>%
  pivot_longer(-c(year, month, lat)) %>% 
  drop_na()

pco2_product_hovmoeller_monthly <-
  pco2_product_hovmoeller_monthly %>% 
  mutate(decimal = year + (month-1) / 12)

# pco2_product_hovmoeller_monthly %>%
#   filter(!(name %in% name_divergent)) %>%
#   group_split(name) %>%
#   # head(1) %>%
#   map(
#     ~ ggplot(data = .x,
#              aes(decimal, lat, fill = value)) +
#       geom_raster() +
#       scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
#       theme(legend.title = element_markdown()) +
#       labs(title = "Monthly means",
#            y = "Latitude") +
#       coord_cartesian(expand = 0) +
#       theme(axis.title.x = element_blank())
#   )
# 
# pco2_product_hovmoeller_monthly %>%
#   filter(name %in% name_divergent) %>%
#   group_split(name) %>%
#   # head(1) %>%
#   map(
#     ~ ggplot(data = .x,
#              aes(decimal, lat, fill = value)) +
#       geom_raster() +
#       scale_fill_gradientn(
#         colours = cmocean("curl")(100),
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks(.x %>% distinct(name)),
#         limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
#         oob = squish
#       )+
#       theme(legend.title = element_markdown()) +
#       labs(title = "Monthly means",
#            y = "Latitude") +
#       coord_cartesian(expand = 0) +
#       theme(axis.title.x = element_blank())
#   )
rm(pco2_product)

gc()
pCO2_product_analysis_2023 <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_analysis.Rmd"),
    product_name = "SOM-FFN",
    year_anom = 2023
  )

2023 anomalies

Functions

Anomaly detection

For the detection of anomalies at any point in time and space, we fit regression models and compare the fitted to the actual value.

We use linear regression models for all parameters, except for , which are approximated with quadratic fits.

The regression models are fitted to all data since , except 2023.

anomaly_determination <- function(df,...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat)
  # df <- pco2_product_map_annual
  
  # Linear regression models

  df_lm <-
    df %>%
    filter(year != 2023,
           !(name %in% name_quadratic_fit)) %>%
    drop_na() %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(fit = map(data, ~ flm(
      formula = value ~ year, data = .x
    )))
  
  df_lm <-
    left_join(
      df_lm %>%
        unnest_wider(fit) %>%
        select(name, !!!group_by,
               intercept = `(Intercept)`,  slope = year) %>%
        mutate(intercept = as.vector(intercept),
               slope = as.vector(slope)),
      df
    ) %>%
    mutate(fit = intercept + year * slope) %>%
    select(name, !!!group_by, year, fit, value) %>%
    mutate(resid = value - fit)

  # df_lm <-
  #   df %>%
  #   filter(year != 2023,
  #          !(name %in% name_quadratic_fit)) %>%
  #   drop_na() %>% 
  #   nest(data = -c(name, !!!group_by)) %>%
  #   mutate(
  #     fit = map(data, ~ lm(value ~ year, data = .x)),
  #     tidied = map(fit, tidy),
  #     augmented = map(fit, augment)
  #   )
  # 
  # 
  # df_lm_year_anom <-
  #   full_join(
  #     df_lm %>%
  #       unnest(tidied) %>%
  #       select(name, !!!group_by, term, estimate) %>%
  #       pivot_wider(names_from = term,
  #                   values_from = estimate) %>%
  #       mutate(fit = `(Intercept)` + year * 2023) %>%
  #       select(name, !!!group_by, fit) %>%
  #       mutate(year = 2023),
  #     df %>%
  #       filter(year == 2023,
  #              !(name %in% name_quadratic_fit))
  #   ) %>%
  #   mutate(resid = value - fit)
  # 
  # 
  # df_lm <-
  #   bind_rows(
  #     df_lm %>%
  #       unnest(augmented) %>%
  #       select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
  #     df_lm_year_anom
  #   )
  # 
  # rm(df_lm_year_anom)
  
  # Quadratic regression models
  
  if(any(df %>% distinct(name) %>% pull() %in% name_quadratic_fit)){
  
  df_quadratic <-
    df %>%
    filter(year != 2023,
           name %in% name_quadratic_fit) %>%
    drop_na() %>% 
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ flm(
        formula = value ~ year + I(year ^ 2), data = .x))
    )
  
  df_quadratic <-
    left_join(
      df_quadratic %>%
        unnest_wider(fit) %>%
        select(name, !!!group_by,
               intercept = `(Intercept)`, slope = year, slope_squared = `I(year^2)`) %>%
        mutate(intercept = as.vector(intercept),
               slope = as.vector(slope),
               slope_squared = as.vector(slope_squared)),
      df
    ) %>%
    mutate(fit = intercept + year * slope + year^2 * slope_squared) %>%
    select(name, !!!group_by, year, fit, value) %>%
    mutate(resid = value - fit)
  
  
  # df_quadratic <-
  #   df %>%
  #   filter(year != 2023,
  #          name %in% name_quadratic_fit) %>%
  #   nest(data = -c(name, !!!group_by)) %>%
  #   mutate(
  #     fit = map(data, ~ lm(value ~ year + I(year ^ 2), data = .x)),
  #     tidied = map(fit, tidy),
  #     augmented = map(fit, augment)
  #   )
  # 
  # df_quadratic_year_anom <-
  #   full_join(
  #     df_quadratic %>%
  #       unnest(tidied) %>%
  #       select(name, !!!group_by, term, estimate) %>%
  #       pivot_wider(names_from = term,
  #                   values_from = estimate) %>%
  #       mutate(fit = `(Intercept)` + year * 2023 + `I(year^2)` * 2023 ^ 2) %>%
  #       select(name, !!!group_by, fit) %>%
  #       mutate(year = 2023),
  #     df %>%
  #       filter(year == 2023,
  #              name %in% name_quadratic_fit)
  #   ) %>%
  #   mutate(resid = value - fit)
  # 
  # 
  # df_quadratic <-
  #   bind_rows(
  #     df_quadratic %>%
  #       unnest(augmented) %>%
  #       select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
  #     df_quadratic_year_anom
  #   )
  # 
  # rm(df_quadratic_year_anom)
  
  # Join linear and quadratic regression results
  
  df_anomaly <-
    bind_rows(df_lm,
              df_quadratic)
  
  rm(df_lm,
     df_quadratic)
  
  } else{
    
    df_anomaly <- df_lm
    
    rm(df_lm)
  }
  
  df_anomaly <-
    df_anomaly %>%
    arrange(year)
  
  
  return(df_anomaly)
  
}

Seasonality plots

warm_color <- "#B84A60FF"
cold_color <- "#16877CFF"

p_season <- function(df, 
                     dim_row = "name", 
                     dim_col = "biome", 
                     title = NULL, 
                     var = "resid",
                     scales = "free_y") {
  
  p <- ggplot(data = df,
              aes(month, !!ensym(var)))
  
  if(var == "resid"){
      p <- p +
        geom_hline(yintercept = 0, linewidth =0.5)
    
  }
  
  
  
  p <- p +
      geom_path(data = . %>% filter(year != 2023),
                aes(group = as.factor(year),
                    col = as.factor(paste(min(year), max(year), sep = "-"))), 
                alpha = 0.5)+
      geom_path(data = . %>% 
                  filter(year != 2023) %>% 
                  group_by_at(vars(month, dim_col, dim_row)) %>% 
                  summarise(!!ensym(var) := mean(!!ensym(var))),
                aes(col = "Climatological\nmean"), 
                linewidth = 1) +
    scale_color_manual(values = c("grey", "black"),
                       guide = guide_legend(order = 2,
                                            reverse = TRUE)) +
    new_scale_color()+
    geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(year)),
                linewidth = 1) +
      scale_color_manual(
        values = warm_color,
        guide = guide_legend(order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = title,
           x = "Month")
  
    if(df %>% filter(name == "fgco2") %>% nrow() > 0 & "value" %in% names(df)){
    
    df_sink <- df %>% 
      filter(year == 2023,
             name == "fgco2")
    
      p <- p +
          geom_point(data = df_sink %>% filter(value < 0),
             aes(shape = "Sink"), fill = "white") +
          geom_point(data = df_sink %>% filter(value >= 0),
             aes(shape = "Source"), fill = "white") +
        scale_shape_manual(values = c(25,24))
    
  }
  
  
  if (!(is.null(dim_col))) {
    p <- p +
      facet_grid(
        as.formula(paste(dim_row, "~", dim_col)),
        scales = scales,
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
    
    
  } else {
    p <- p +
      facet_grid(
        as.formula(paste(dim_row, "~ .")),
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
  }
  
  p <- p +
    theme(
      strip.text.y.left = element_markdown(),
      strip.placement = "outside",
      strip.background.y = element_blank(),
      axis.title.y = element_blank(),
      legend.title = element_blank()
    )
  
  p
  
}

fCO2 decomposition

fco2_decomposition <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  # group_by <- quos(biome, year, month)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    df %>%
    filter(name %in% c("temperature", "sfco2"))
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "temperature") %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid),
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "sfco2") %>%
        select(-c(value, resid)) %>%
        pivot_wider(values_from = fit)
    )
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_therm = (sfco2 * exp(0.0423 * temperature)) - sfco2)
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition,
      df %>%
        filter(name %in% c("sfco2")) %>%
        select(-c(value, fit, name)) %>%
        rename(sfco2_total = resid)
    )
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_nontherm = sfco2_total - sfco2_therm)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    select(-c(temperature, sfco2)) %>%
    pivot_longer(starts_with("sfco2"),
                 values_to = "resid")
  
}
fco2_decomposition <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  # group_by <- quos(biome, year, month)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    df %>%
    filter(name %in% c("temperature", "sfco2"))
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "temperature") %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid),
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "sfco2") %>%
        select(-c(value, resid)) %>%
        pivot_wider(values_from = fit)
    )
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(
      sfco2_therm = (sfco2 * exp(0.0423 * temperature)) - sfco2,
      sfco2_nontherm = (sfco2 * exp(-0.0423 * temperature)) - sfco2)
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition,
      df %>%
        filter(name %in% c("sfco2")) %>%
        select(-c(value, fit, name)) %>%
        rename(sfco2_total = resid)
    )
  
  
  # pco2_product_biome_monthly_fCO2_decomposition <-
  #   pco2_product_biome_monthly_fCO2_decomposition %>%
  #   mutate(sfco2_nontherm = sfco2_total - sfco2_therm)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    select(-c(temperature, sfco2)) %>%
    pivot_longer(starts_with("sfco2"),
                 values_to = "resid")
  
}

Flux attribution

flux_attribution <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  
  pco2_product_flux_attribution <-
    df %>%
    filter(name %in% c("dfco2", "kw_sol", "fgco2"))
  
  
  pco2_product_flux_attribution <-
    inner_join(
      pco2_product_flux_attribution %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid,
                    names_prefix = "resid_"),
      pco2_product_flux_attribution %>%
        select(-c(value, resid)) %>%
        filter(name != "fgco2") %>%
        pivot_wider(values_from = fit)
    )
  
    pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    mutate(
      resid_fgco2_dfco2 = resid_dfco2 * kw_sol,
      resid_fgco2_kw_sol = resid_kw_sol * dfco2,
      resid_fgco2_dfco2_kw_sol = resid_dfco2 * resid_kw_sol
      # resid_fgco2_sum = resid_fgco2_dfco2 + resid_fgco2_kw_sol + resid_fgco2_dfco2_kw_sol
    )
  
  # pco2_product_flux_attribution <-
  #   pco2_product_flux_attribution %>%
  #   mutate(resid_fgco2_offset = resid_fgco2 - resid_fgco2_sum)
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    select(!!!group_by, starts_with("resid_fgco2")) %>%
    pivot_longer(starts_with("resid_"),
                 values_to = "resid")
  
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    filter(str_detect(name, "dfco2|kw_sol")) %>% 
    mutate(name = factor(
      name,
      levels = c(
        "resid_fgco2",
        "resid_fgco2_dfco2",
        "resid_fgco2_kw_sol",
        "resid_fgco2_dfco2_kw_sol",
        "resid_fgco2_sum",
        "resid_fgco2_offset"
      )
    ))
  
}

Maps

The following maps show the absolute state of each variable in 2023 as provided through the pCO2 product, the change in that variable from 1990 to 2023, as well es the anomalies in 2023. Changes and anomalies are determined based on the predicted value of a linear regression model fit to the data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

2023 absolute

pco2_product_map_annual_anomaly <-
  pco2_product_map_annual %>%
  drop_na() %>% 
  anomaly_determination(lon, lat)

pco2_product_map_annual_anomaly <-
  pco2_product_map_annual_anomaly %>%
  drop_na()

pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Annual mean", 2023)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26

Version Author Date
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         name %in% name_divergent) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = paste("Annual mean", 2023)) +
         scale_fill_gradientn(
           colours = cmocean("curl")(100),
           rescaler = ~ scales::rescale_mid(.x, mid = 0),
           name = labels_breaks(.x %>% distinct(name)),
           limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
           oob = squish
         ) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

2023 anomaly

pco2_product_map_annual_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title =  paste(2023,"anomaly")) +
         scale_fill_gradientn(
           colours = cmocean("curl")(100),
           rescaler = ~ scales::rescale_mid(.x, mid = 0),
           name = labels_breaks(.x %>% distinct(name)),
           limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
           oob = squish
         )+
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26

Version Author Date
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

SST flux slope

pco2_product_map_annual_slope <-
pco2_product_map_annual_anomaly %>%
  filter(year != 2023) %>% 
  select(year, lon, lat, resid, name) %>% 
  pivot_wider(values_from = resid) %>%
  select(lon, lat, fgco2, temperature) %>%
  drop_na() %>% 
  nest(data = -c(lon, lat)) %>%
  mutate(fit = map(data, ~ flm(
    formula = fgco2 ~ temperature, data = .x
  )))
  
pco2_product_map_annual_slope <-
  pco2_product_map_annual_slope %>%
  unnest_wider(fit) %>%
  select(lon, lat, slope = temperature) %>%
  mutate(slope = as.vector(slope))

map +
  geom_tile(data = pco2_product_map_annual_slope, 
            aes(lon, lat, fill = slope)) +
  scale_fill_gradientn(
    colours = cmocean("curl")(100),
    rescaler = ~ scales::rescale_mid(.x, mid = 0),
    limits = c(
      quantile(pco2_product_map_annual_slope$slope,.01),
      quantile(pco2_product_map_annual_slope$slope, .99)),
    oob = squish
  ) +
  labs(title = "Correlation of historic annual flux and SST anomalies") +
  guides(
    fill = guide_colorbar(
      barheight = unit(0.3, "cm"),
      barwidth = unit(6, "cm"),
      ticks = TRUE,
      ticks.colour = "grey20",
      frame.colour = "grey20",
      label.position = "top",
      direction = "horizontal"
    )
  ) +
  theme(legend.title = element_markdown(), legend.position = "top")

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26
pco2_product_map_annual_slope %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_map_annual_slope.csv"
    )
  )

pco2_product_map_annual_anomaly %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_map_annual_anomaly.csv"
    )
  )

rm(pco2_product_map_annual_anomaly,
   pco2_product_map_annual_slope)
gc()

Monthly means

2023 absolute

pco2_product_map_monthly_anomaly <-
  pco2_product_map_monthly %>%
  drop_na() %>% 
  anomaly_determination(lon, lat, month)

pco2_product_map_monthly_anomaly <-
  pco2_product_map_monthly_anomaly %>% 
  drop_na()



pco2_product_map_monthly_anomaly %>%
  filter(year == 2023, !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 2023)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top") +
      facet_wrap(~ month, ncol = 2)
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
pco2_product_map_monthly_anomaly %>%
  filter(year == 2023, name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 2023)) +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
        oob = squish
      ) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top") +
      facet_wrap( ~ month, ncol = 2)
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

2023 anomaly

pco2_product_map_monthly_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x, aes(lon, lat, fill = resid)) +
      labs(title = paste(2023, "anomaly")) +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top") +
      facet_wrap( ~ month, ncol = 2)
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26

fCO2 decomposition

pco2_product_map_monthly_fCO2_decomposition <-
  fco2_decomposition(pco2_product_map_monthly_anomaly,
                     year, month, lon, lat)


# pco2_product_map_monthly_fCO2_decomposition %>%
#   filter(year == 2023) %>%
#   mutate(product == "pco2 product") %>%
#   group_split(product) %>%
#   head(1) %>%
#   map(
#     ~ map +
#       geom_tile(data = .x,
#                 aes(lon, lat, fill = resid)) +
#       labs(title = .x$product) +
#       scale_fill_gradientn(
#         colours = cmocean("curl")(100),
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks("sfco2"),
#         limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
#         oob = squish
#       ) +
#       facet_grid(month ~ name,
#                  labeller = labeller(name = x_axis_labels)) +
#       guides(
#         fill = guide_colorbar(
#           barheight = unit(0.3, "cm"),
#           barwidth = unit(6, "cm"),
#           ticks = TRUE,
#           ticks.colour = "grey20",
#           frame.colour = "grey20",
#           label.position = "top",
#           direction = "horizontal"
#         )
#       ) +
#       theme(legend.title = element_markdown(),
#             legend.position = "top")
#   )
pco2_product_map_annual_fCO2_decomposition <-
  pco2_product_map_monthly_fCO2_decomposition %>% 
  select(year, lat, lon, name, resid) %>% 
  fgroup_by(year, lat, lon, name) %>% 
  fmean()

gc()
             used    (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells    3208887   171.4   86750897  4633.0  264742725 14138.8
Vcells 2543905391 19408.5 6442228328 49150.4 6442219861 49150.3
map +
  geom_tile(data = pco2_product_map_annual_fCO2_decomposition %>%
              filter(year == 2023), aes(lon, lat, fill = resid)) +
  scale_fill_gradientn(
    colours = cmocean("curl")(100),
    rescaler = ~ scales::rescale_mid(.x, mid = 0),
    name = labels_breaks("sfco2"),
    limits = c(
      quantile(pco2_product_map_annual_fCO2_decomposition$resid, .01),
      quantile(pco2_product_map_annual_fCO2_decomposition$resid, .99)
    ),
    oob = squish
  ) +
  facet_wrap( ~ name,
              ncol = 2,
              labeller = labeller(name = x_axis_labels)) +
  guides(
    fill = guide_colorbar(
      barheight = unit(0.3, "cm"),
      barwidth = unit(6, "cm"),
      ticks = TRUE,
      ticks.colour = "grey20",
      frame.colour = "grey20",
      label.position = "top",
      direction = "horizontal"
    )
  ) +
  theme(legend.title = element_markdown(), legend.position = "top")

Version Author Date
825ac32 jens-daniel-mueller 2024-09-26
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26

Flux attribution

pco2_product_map_monthly_flux_attribution <-
  flux_attribution(pco2_product_map_monthly_anomaly,
                   year, month, lon, lat)

# pco2_product_map_monthly_flux_attribution %>%
#   filter(year == 2023) %>%
#   drop_na() %>%
#   mutate(product == "pco2 product") %>%
#   group_split(product) %>%
#   head(1) %>%
#   map(
#     ~ map +
#       geom_tile(data = .x,
#                 aes(lon, lat, fill = resid)) +
#       labs(subtitle = .x$product) +
#       scale_fill_gradientn(
#         colours = cmocean("curl")(100),
#         rescaler = ~ scales::rescale_mid(.x, mid = 0),
#         name = labels_breaks("fgco2"),
#         limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
#         oob = squish
#       ) +
#       theme(legend.title = element_markdown(),
#             legend.position = "bottom") +
#       facet_grid(month ~ name,
#                  labeller = labeller(name = x_axis_labels)) +
#       guides(
#         fill = guide_colorbar(
#           barheight = unit(0.3, "cm"),
#           barwidth = unit(6, "cm"),
#           ticks = TRUE,
#           ticks.colour = "grey20",
#           frame.colour = "grey20",
#           label.position = "top",
#           direction = "horizontal"
#         )
#       ) +
#       theme(legend.title = element_markdown(),
#             legend.position = "top",
#             strip.text.x.top = element_markdown())
#   )
pco2_product_map_annual_flux_attribution <-
  pco2_product_map_monthly_flux_attribution %>% 
  group_by(year, lat, lon, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup()

map +
  geom_tile(data = pco2_product_map_annual_flux_attribution %>%
              filter(year == 2023), aes(lon, lat, fill = resid)) +
  scale_fill_gradientn(
    colours = cmocean("curl")(100),
    rescaler = ~ scales::rescale_mid(.x, mid = 0),
    name = labels_breaks("fgco2"),
    limits = c(
      quantile(pco2_product_map_annual_flux_attribution$resid, .01, na.rm = TRUE),
      quantile(pco2_product_map_annual_flux_attribution$resid, .99, na.rm = TRUE)
    ),
    oob = squish
  ) +
  theme(legend.title = element_markdown(), legend.position = "bottom") +
  facet_wrap(~ name,
             ncol = 2,
             labeller = labeller(name = x_axis_labels)) +
  guides(
    fill = guide_colorbar(
      barheight = unit(0.3, "cm"),
      barwidth = unit(6, "cm"),
      ticks = TRUE,
      ticks.colour = "grey20",
      frame.colour = "grey20",
      label.position = "top",
      direction = "horizontal"
    )
  ) +
  theme(
    legend.title = element_markdown(),
    legend.position = "top",
    strip.text.x.top = element_markdown()
    
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26
gc()
             used    (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells    3229675   172.5   69400718  3706.4  264742725 14138.8
Vcells 2810617050 21443.4 6442228328 49150.4 6442219861 49150.3
pco2_product_map_monthly_anomaly %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_map_monthly_anomaly.csv"
    )
  )

pco2_product_map_annual_flux_attribution %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_map_annual_flux_attribution.csv"
    )
  )

pco2_product_map_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_map_annual_fCO2_decomposition.csv"
    )
  )

pco2_product_map_monthly_flux_attribution %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_map_monthly_flux_attribution.csv"
    )
  )

pco2_product_map_monthly_fCO2_decomposition %>%
  filter(year == 2023) %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_map_monthly_fCO2_decomposition.csv"
    )
  )

rm(pco2_product_map_annual_flux_attribution,
   pco2_product_map_annual_fCO2_decomposition)

gc()

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of the linear/quadratic fits.

Hovmoeller plots are first presented as annual means, and than as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

2023 annual anomalies

pco2_product_hovmoeller_annual_anomaly <-
  pco2_product_hovmoeller_annual %>%
  anomaly_determination(lat) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_annual_anomaly %>%
  # filter(name == "mld") %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x, aes(year, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual mean anomalies", y = "Latitude") +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

2023 monthly anomalies

pco2_product_hovmoeller_monthly_anomaly <-
  pco2_product_hovmoeller_monthly %>%
  select(-c(decimal)) %>% 
  anomaly_determination(lat, month) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_monthly_anomaly <-
  pco2_product_hovmoeller_monthly_anomaly %>%
  mutate(decimal = year + (month - 1) / 12)
  
pco2_product_hovmoeller_monthly_anomaly %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Three years prior 2023

pco2_product_hovmoeller_monthly_anomaly %>%
  filter(between(year, 2023-2, 2023)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
f4a8ec9 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
5e77ff9 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_hovmoeller_monthly_anomaly %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_hovmoeller_monthly_anomaly.csv"
    )
  )

rm(
  pco2_product_hovmoeller_annual,
  pco2_product_hovmoeller_monthly,
  pco2_product_hovmoeller_annual_anomaly,
  pco2_product_hovmoeller_monthly_anomaly
)

gc()

Regional means and integrals

The following plots show regionally averaged (or integrated) values of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit.

Anomalies are first presented relative to the predicted annual mean of each year, hence preserving the seasonality. Furthermore, anomalies are presented relative to the predicted monthly mean values, such that the mean seasonality is removed.

2023 absolute values

Global non-polar

fig.height <- pco2_product_biome_monthly %>% 
  distinct(name) %>% 
  nrow()

fig.height <- (fig.height + 2) * 0.1
pco2_product_biome_monthly %>%
  filter(biome %in% "Global non-polar") %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Global non-polar") +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
e827817 jens-daniel-mueller 2024-09-09
f220529 jens-daniel-mueller 2024-08-22
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
be285dc jens-daniel-mueller 2024-05-21
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Key biomes

pco2_product_biome_monthly %>%
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
be285dc jens-daniel-mueller 2024-05-21
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_biome_monthly %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )

Version Author Date
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
be285dc jens-daniel-mueller 2024-05-21
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
be285dc jens-daniel-mueller 2024-05-21
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
be285dc jens-daniel-mueller 2024-05-21
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Version Author Date
8b8904a jens-daniel-mueller 2024-06-26
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
be285dc jens-daniel-mueller 2024-05-21
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

2023 anomalies

Global non-polar

pco2_product_biome_monthly_detrended <-
  full_join(pco2_product_biome_monthly,
            pco2_product_biome_monthly_anomaly %>% select(-c(value, resid))) %>%
  mutate(resid = value - fit)

pco2_product_biome_monthly_detrended %>% 
  filter(biome %in% "Global non-polar") %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Global non-polar") +
  facet_wrap(
    name ~ .,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    strip.position = "left",
    ncol = 2
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_biome_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Key biomes

pco2_product_biome_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_biome_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, resid, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = paste("Anomalies from predicted monthly mean |", .x$biome)) +
      facet_wrap(
        name ~ .,
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        strip.position = "left",
        ncol = 2
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )

pco2_product_biome_monthly_detrended %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_biome_monthly_detrended.csv"
    )
  )

2023 anomaly correlation

The following plots aim to unravel the correlation between regionally integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot integrated fluxes separately for each region. Secondly, we normalize the monthly anomalies to the spread (expressed as standard deviation) of the residuals from the fit.

Annual anomalies

Absolute

pco2_product_biome_annual_anomaly %>%
  filter(biome == "Global non-polar") %>%
  select(-c(value, fit)) %>% 
  pivot_wider(values_from = resid) %>% 
  pivot_longer(-c(year, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(!between(year, 2023-1, 2023)),
             aes(fill = year),
             shape = 21) +
  geom_smooth(
    data = . %>% filter(!between(year, 2023-1, 2023)),
    method = "lm",
    se = FALSE,
    fullrange = TRUE,
    aes(col = paste("Regression fit\nexcl.", 2023))
  ) +
  scale_color_grey() +
  scale_fill_grayC()+
  new_scale_fill() +
  geom_point(data = . %>% filter(between(year, 2023-1, 2023)),
             aes(fill = as.factor(year)),
             shape = 21, size = 2)  +
  scale_fill_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  labs(title = "Global non-polar integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
e827817 jens-daniel-mueller 2024-09-09
f220529 jens-daniel-mueller 2024-08-22
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
be285dc jens-daniel-mueller 2024-05-21
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Monthly anomalies

Absolute

pco2_product_biome_monthly_detrended_anomaly <-
  pco2_product_biome_monthly_detrended %>%
  select(year, month, biome, name, resid) %>%
  pivot_wider(names_from = name,
              values_from = resid)


pco2_product_biome_monthly_detrended_anomaly %>%
  filter(biome == "Global non-polar") %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(year != 2023),
             aes(col = paste(min(year), max(year), sep = "-")),
             alpha = 0.2) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    aes(col = paste(min(year), max(year), sep = "-")),
    method = "lm",
    se = FALSE,
    fullrange = TRUE
  )  +
  scale_color_grey(name = "") +
  new_scale_color() +
  geom_path(data = . %>% filter(year == 2023),
            aes(col = as.factor(month), group = 1))  +
  geom_point(data = . %>% filter(year == 2023),
             aes(fill =  as.factor(month)),
             shape = 21,
             size = 3)  +
  scale_color_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 2023)) +
  scale_fill_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 2023)) +
  labs(title = "Global non-polar integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank()
  )

Version Author Date
e827817 jens-daniel-mueller 2024-09-09
f220529 jens-daniel-mueller 2024-08-22
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
be285dc jens-daniel-mueller 2024-05-21
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_biome_monthly_detrended_anomaly %>%
  filter(!(biome %in% c(key_biomes, "Global non-polar"))) %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  filter(name %in% c("temperature", "chl", "dfco2", "kw_sol")) %>% 
  group_split(name) %>%
  head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free") +
      labs(
        title = "Biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )

Version Author Date
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
f8eeceb jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Relative to spread

pco2_product_biome_monthly_detrended_anomaly_spread <-
  pco2_product_biome_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  filter(year != 2023) %>%
  group_by(month, biome, name) %>%
  summarise(spread = sd(value, na.rm = TRUE)) %>%
  ungroup()



pco2_product_biome_monthly_detrended_anomaly_relative <-
  full_join(
    pco2_product_biome_monthly_detrended_anomaly_spread,
    pco2_product_biome_monthly_detrended_anomaly %>%
      pivot_longer(-c(month, biome, year))
  )

pco2_product_biome_monthly_detrended_anomaly_relative <-
  pco2_product_biome_monthly_detrended_anomaly_relative %>%
  mutate(value = value / spread) %>%
  select(-spread) %>%
  pivot_wider() %>%
  pivot_longer(-c(month, biome, year, fgco2_int))



pco2_product_biome_monthly_detrended_anomaly_relative %>%
  filter(name %in% c("temperature", "chl", "dfco2", "kw_sol")) %>% 
  group_split(name) %>%
  head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_vline(xintercept = 0) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      facet_wrap( ~ biome, ncol = 3) +
      coord_fixed() +
      labs(
        title = "Biome integrated fluxes normalized to spread",
        y = str_split_i(labels_breaks("fgco2_int")$i_legend_title, "<br>", i = 1),
        x = str_split_i(labels_breaks(.x %>% distinct(name))$i_legend_title, "<br>", i = 1)
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )

Version Author Date
e827817 jens-daniel-mueller 2024-09-09
f220529 jens-daniel-mueller 2024-08-22
5634f7f jens-daniel-mueller 2024-06-26
67f79ca jens-daniel-mueller 2024-06-12
4de1802 jens-daniel-mueller 2024-06-12
bc2711d jens-daniel-mueller 2024-06-12
5c52cd2 jens-daniel-mueller 2024-06-12
e3748fc jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
54a9740 jens-daniel-mueller 2024-06-11
3a18397 jens-daniel-mueller 2024-06-11
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
8c96de4 jens-daniel-mueller 2024-05-08
79ef4f3 jens-daniel-mueller 2024-05-08
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

fCO2 decomposition

biome_mask <-
  bind_rows(
    biome_mask,
    biome_mask %>% 
      filter(!str_detect(biome, "SO-SPSS|SO-ICE|Arctic")) %>% 
      mutate(biome = "Global non-polar")
  )

pco2_product_biome_monthly_fCO2_decomposition <-
  full_join(pco2_product_map_monthly_fCO2_decomposition,
            biome_mask,
            relationship = "many-to-many") %>% 
  group_by(year, month, biome, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup() %>% 
  drop_na()


pco2_product_biome_annual_fCO2_decomposition <-
  pco2_product_biome_monthly_fCO2_decomposition %>%
  group_by(year, biome, name) %>%
  summarise(resid = mean(resid)) %>%
  ungroup()


pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  p_season(title  = paste("Anomalies from predicted monthly mean"))

Version Author Date
825ac32 jens-daniel-mueller 2024-09-26
e827817 jens-daniel-mueller 2024-09-09
f220529 jens-daniel-mueller 2024-08-22
c858f57 jens-daniel-mueller 2024-07-01
5634f7f jens-daniel-mueller 2024-06-26

Flux attribution

Seasonal

pco2_product_biome_monthly_flux_attribution <-
  full_join(pco2_product_map_monthly_flux_attribution,
            biome_mask,
            relationship = "many-to-many") %>% 
  group_by(year, month, biome, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup() %>% 
  drop_na()

pco2_product_biome_monthly_flux_attribution_total <-
  full_join(pco2_product_map_monthly_anomaly %>% 
              filter(name == "fgco2") %>% 
              mutate(name = "resid_fgco2"),
            biome_mask,
            relationship = "many-to-many") %>% 
  group_by(year, month, biome, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup() %>% 
  drop_na()

pco2_product_biome_monthly_flux_attribution <-
  bind_rows(
    pco2_product_biome_monthly_flux_attribution,
    pco2_product_biome_monthly_flux_attribution_total
  )


pco2_product_biome_annual_flux_attribution <-
  pco2_product_biome_monthly_flux_attribution %>%
  group_by(year, biome, name) %>%
  summarise(resid = mean(resid)) %>%
  ungroup()


pco2_product_biome_monthly_flux_attribution %>%
  filter(year == 2023,
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_path(
    aes(month, resid)
  ) +
  geom_point(
    aes(month, resid),
    shape = 21,
    alpha = 0.5,
    col = "grey30"
  ) +
  scale_y_continuous(breaks = seq(-10,10,0.2)) +
  scale_x_continuous(position = "top", breaks = seq(1,12,3)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
             scales = "free_y",
             space = "free_y", 
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
e827817 jens-daniel-mueller 2024-09-09
f220529 jens-daniel-mueller 2024-08-22
c858f57 jens-daniel-mueller 2024-07-01
5634f7f jens-daniel-mueller 2024-06-26
pco2_product_biome_monthly_flux_attribution %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  p_season(title  = paste("Anomalies from predicted monthly mean"))

Version Author Date
e827817 jens-daniel-mueller 2024-09-09
f220529 jens-daniel-mueller 2024-08-22
c858f57 jens-daniel-mueller 2024-07-01
5634f7f jens-daniel-mueller 2024-06-26

Annual

pco2_product_biome_annual_flux_attribution <-
  full_join(
    pco2_product_biome_annual_flux_attribution %>%
      filter(year == 2023) %>%
      select(-year),
    pco2_product_biome_annual_flux_attribution %>%
      filter(year != 2023) %>%
      group_by(biome, name) %>%
      summarise(resid_mean = mean(abs(resid))) %>%
      ungroup()
  )

# pco2_product_biome_annual_flux_attribution %>%
#   filter(biome %in% c("Global non-polar", key_biomes)) %>%
#   mutate(product == "pco2 product") %>%
#   group_split(product) %>%
#   # head(1) %>%
#   map(
#     ~ ggplot(data = .x) +
#       geom_col(aes("x", resid),
#                position = "dodge2") +
#       geom_col(
#         aes(
#           "x",
#           resid_mean * sign(resid),
#           col = paste0("Mean\nexcl.",2023)
#         ),
#         position = "dodge2",
#         fill = "transparent"
#       ) +
#       labs(y = labels_breaks(unique("fgco2"))$i_legend_title,
#            title = .x$biome) +
#       facet_grid(
#         biome~name,
#         labeller = labeller(name = x_axis_labels),
#         switch = "x"
#       ) +
#       scale_color_grey() +
#       theme(
#         legend.title = element_blank(),
#         axis.text.x = element_blank(),
#         axis.ticks.x = element_blank(),
#         axis.title.x = element_blank(),
#         axis.title.y = element_markdown(),
#         strip.text.x.bottom = element_markdown(),
#         strip.placement = "outside",
#         strip.background.x = element_blank(),
#         legend.position = "top"
#       )
#   )
pco2_product_biome_annual_flux_attribution %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_biome_annual_flux_attribution.csv"
    )
  )

pco2_product_biome_monthly_flux_attribution %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_biome_monthly_flux_attribution.csv"
    )
  )

pco2_product_biome_annual_fCO2_decomposition %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_biome_annual_fCO2_decomposition.csv"
    )
  )

pco2_product_biome_monthly_fCO2_decomposition %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_biome_monthly_fCO2_decomposition.csv"
    )
  )

rm(
  pco2_product_biome_annual_flux_attribution,
  pco2_product_biome_monthly_flux_attribution,
  pco2_product_biome_annual_fCO2_decomposition,
  pco2_product_biome_monthly_fCO2_decomposition
)

gc()

Zonal mean sections

The following analysis is available for GOBMs only.

Annual means

2023 anomaly

pco2_product_zonal_mean_annual <-   pco2_product_zonal_mean %>%
  pivot_longer(-c(region, depth, lat, time, year, month)) %>%
  group_by(region, lat, depth, year, name) %>%
  summarise(value = mean(value)) %>%
  ungroup() %>%
  drop_na() %>%
  mutate(region = str_to_title(region))

pco2_product_zonal_mean_annual_anomaly <-
  pco2_product_zonal_mean_annual %>% 
  anomaly_determination(region, lat, depth)

pco2_product_zonal_mean_annual_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(3) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(lat, depth, z = resid)) +
      scale_fill_discrete_divergingx(name = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      guides(fill = guide_colorsteps(
        barheight = unit(8, "cm"),
        show.limits = TRUE
      )) +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      scale_x_continuous(breaks = seq(-100, 100, 20)) +
      coord_cartesian(expand = 0) +
      facet_wrap( ~ region, ncol = 1) +
      labs(y = "Depth (m)") +
      theme(legend.title = element_markdown())
  )
pco2_product_zonal_mean_annual_anomaly %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_zonal_mean_sections_annual.csv"
    )
  )

Biome profiles

The following analysis is available for GOBMs only.

Annual means

2023 anomaly

pco2_product_profiles_annual <-   pco2_product_profiles %>%
  pivot_longer(-c(biome, depth, time, year, month)) %>%
  group_by(biome, depth, year, name) %>%
  summarise(value = mean(value)) %>%
  ungroup() %>%
  drop_na()

pco2_product_profiles_annual_anomaly <-
  pco2_product_profiles_annual %>% 
  anomaly_determination(biome, depth)

pco2_product_profiles_annual_anomaly %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_path(aes(resid, depth, group = year), col = "grey30", alpha = 0.5) +
      geom_path(data = .x %>% filter(year == 2023),
                aes(resid, depth, col = as.factor(year)),
                linewidth = 1) +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      facet_wrap( ~ biome) +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
pco2_product_profiles_annual_anomaly %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_profiles_annual.csv"
    )
  )

Monthly means

2023 anomaly

pco2_product_profiles_monthly <-   pco2_product_profiles %>%
  pivot_longer(-c(biome, depth, time, year, month)) %>%
  group_by(biome, depth, year, month, name) %>%
  summarise(value = mean(value)) %>%
  ungroup() %>%
  drop_na()

pco2_product_profiles_monthly_anomaly <-
  pco2_product_profiles_monthly %>% 
  anomaly_determination(biome, depth, month)

pco2_product_profiles_monthly_anomaly %>%
  filter(year == 2023) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_vline(xintercept = 0) +
      geom_path(aes(resid, depth, col = as.factor(month)),
                linewidth = 1) +
      scale_color_scico_d(palette = "hawaii") +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50, 100, 200, 400)) +
      facet_wrap(~ biome,
                 scales = "free_x") +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
pco2_product_profiles_monthly_anomaly %>%
  write_csv(
    paste0(
      "../data/",
      "SOM-FFN",
      "_",
      "2023",
      "_profiles_monthly.csv"
    )
  )

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scales_1.2.1        cmocean_0.3-1       ggtext_0.1.2       
 [4] broom_1.0.5         khroma_1.9.0        ggnewscale_0.4.8   
 [7] seacarb_3.3.1       SolveSAPHE_2.1.0    oce_1.7-10         
[10] gsw_1.1-1           lubridate_1.9.0     timechange_0.1.1   
[13] stars_0.6-0         abind_1.4-5         terra_1.7-65       
[16] sf_1.0-9            rnaturalearth_0.1.0 geomtextpath_0.1.1 
[19] colorspace_2.0-3    marelac_2.1.10      shape_1.4.6        
[22] ggforce_0.4.1       metR_0.13.0         scico_1.3.1        
[25] patchwork_1.1.2     collapse_1.8.9      forcats_0.5.2      
[28] stringr_1.5.0       dplyr_1.1.3         purrr_1.0.2        
[31] readr_2.1.3         tidyr_1.3.0         tibble_3.2.1       
[34] ggplot2_3.4.4       tidyverse_1.3.2     workflowr_1.7.0    

loaded via a namespace (and not attached):
  [1] readxl_1.4.1            backports_1.4.1         systemfonts_1.0.4      
  [4] lwgeom_0.2-10           sp_1.5-1                splines_4.2.2          
  [7] digest_0.6.30           htmltools_0.5.3         ncmeta_0.3.5           
 [10] fansi_1.0.3             magrittr_2.0.3          checkmate_2.1.0        
 [13] memoise_2.0.1           googlesheets4_1.0.1     tzdb_0.3.0             
 [16] modelr_0.1.10           vroom_1.6.0             rvest_1.0.3            
 [19] textshaping_0.3.6       haven_2.5.1             xfun_0.35              
 [22] callr_3.7.3             crayon_1.5.2            jsonlite_1.8.3         
 [25] glue_1.6.2              polyclip_1.10-4         gtable_0.3.1           
 [28] gargle_1.2.1            DBI_1.1.3               Rcpp_1.0.11            
 [31] viridisLite_0.4.1       gridtext_0.1.5          units_0.8-0            
 [34] bit_4.0.5               proxy_0.4-27            httr_1.4.4             
 [37] RColorBrewer_1.1-3      ellipsis_0.3.2          pkgconfig_2.0.3        
 [40] farver_2.1.1            sass_0.4.4              dbplyr_2.2.1           
 [43] utf8_1.2.2              here_1.0.1              tidyselect_1.2.0       
 [46] labeling_0.4.2          rlang_1.1.1             later_1.3.0            
 [49] munsell_0.5.0           cellranger_1.1.0        tools_4.2.2            
 [52] cachem_1.0.6            cli_3.6.1               generics_0.1.3         
 [55] evaluate_0.18           fastmap_1.1.0           yaml_2.3.6             
 [58] processx_3.8.0          knitr_1.41              bit64_4.0.5            
 [61] fs_1.5.2                RNetCDF_2.6-1           nlme_3.1-160           
 [64] whisker_0.4             xml2_1.3.3              compiler_4.2.2         
 [67] rstudioapi_0.15.0       e1071_1.7-12            reprex_2.0.2           
 [70] tweenr_2.0.2            bslib_0.4.1             stringi_1.7.8          
 [73] highr_0.9               ps_1.7.2                lattice_0.20-45        
 [76] Matrix_1.5-3            classInt_0.4-8          commonmark_1.8.1       
 [79] markdown_1.4            vctrs_0.6.4             pillar_1.9.0           
 [82] lifecycle_1.0.3         jquerylib_0.1.4         data.table_1.14.6      
 [85] httpuv_1.6.6            R6_2.5.1                promises_1.2.0.1       
 [88] KernSmooth_2.23-20      codetools_0.2-18        MASS_7.3-58.1          
 [91] assertthat_0.2.1        rprojroot_2.0.3         withr_2.5.0            
 [94] mgcv_1.8-41             parallel_4.2.2          hms_1.1.2              
 [97] grid_4.2.2              rnaturalearthdata_0.1.0 class_7.3-20           
[100] rmarkdown_2.18          googledrive_2.0.0       git2r_0.30.1           
[103] getPass_0.2-2