Last updated: 2024-08-22

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7232300. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data
    Ignored:    output/

Unstaged changes:
    Modified:   analysis/child/pCO2_product_synopsis.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/biomes.Rmd) and HTML (docs/biomes.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7232300 jens-daniel-mueller 2024-08-22 included all biomes
html 4f019e4 jens-daniel-mueller 2024-07-11 Build site.
html 334ff26 jens-daniel-mueller 2024-07-10 manual commit
html e15a0e8 jens-daniel-mueller 2024-06-25 Build site.
Rmd e62af33 jens-daniel-mueller 2024-06-25 Equatorial Indian biomes joined
html 8220f80 jens-daniel-mueller 2024-06-25 Build site.
Rmd 5e09f1b jens-daniel-mueller 2024-06-25 SP-STPS renamed, super biomes removed
html caec400 jens-daniel-mueller 2024-06-13 Build site.
html 3148fef jens-daniel-mueller 2024-06-13 Build site.
html a60be97 jens-daniel-mueller 2024-06-12 Build site.
html d46002d jens-daniel-mueller 2024-06-12 manual commit
html 03c415f jens-daniel-mueller 2024-06-11 Build site.
html 5261667 jens-daniel-mueller 2024-06-11 manual commit
Rmd dfc33c9 jens-daniel-mueller 2024-06-11 manual commit
html 6954c65 jens-daniel-mueller 2024-06-06 Build site.
html 5f7453c jens-daniel-mueller 2024-05-25 Build site.
Rmd 76f3c0b jens-daniel-mueller 2024-05-25 SO processed, but not included in global integrals
Rmd b58f588 jens-daniel-mueller 2024-05-24 manual commit
html 009791f jens-daniel-mueller 2024-05-14 Build site.
Rmd aeaee82 jens-daniel-mueller 2024-05-13 rebuild entire website with focus on extended NH
html 7f9c687 jens-daniel-mueller 2024-04-23 Build site.
html ce4e2a6 jens-daniel-mueller 2024-04-17 Build site.
html 58e3680 jens-daniel-mueller 2024-04-11 Build site.
html dfcf790 jens-daniel-mueller 2024-04-11 Build site.
html 139bc97 jens-daniel-mueller 2024-04-11 manual deletion of files
html 69dc18c jens-daniel-mueller 2024-04-04 Build site.
html c9d994c jens-daniel-mueller 2024-04-04 Build site.
html 40cb158 jens-daniel-mueller 2024-04-03 Build site.
html a83c8fc jens-daniel-mueller 2024-04-03 Build site.
html 6bb7ce2 jens-daniel-mueller 2024-03-25 Build site.
html 4589270 jens-daniel-mueller 2024-03-24 Build site.
html dd640bd jens-daniel-mueller 2024-03-24 Build site.
Rmd 6358178 jens-daniel-mueller 2024-03-24 seperate biome mask
html 1d6b4c8 jens-daniel-mueller 2024-03-24 Build site.
Rmd 36b12ec jens-daniel-mueller 2024-03-24 seperate biome mask
html 78465dc jens-daniel-mueller 2024-03-24 Build site.
Rmd 900b8d0 jens-daniel-mueller 2024-03-24 seperate biome mask
Rmd a7ea840 jens-daniel-mueller 2024-03-24 manual commit
html 62ea4dd jens-daniel-mueller 2024-03-24 Build site.
Rmd 459e41d jens-daniel-mueller 2024-03-24 biomes added to ancillary

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Read data

In this study, we use the biome mask from RECCAP2, a modification of the original mask developed by Fay and McKinley (2014).

path_reccap2 <-
  "/nfs/kryo/work/datasets/gridded/ocean/interior/reccap2/"
print("RECCAP2_region_masks_all_v20221025.nc")
[1] "RECCAP2_region_masks_all_v20221025.nc"
biome_mask <-
  read_ncdf(
    paste(
      path_reccap2,
      "supplementary/RECCAP2_region_masks_all_v20221025.nc",
      sep = ""
    )
  ) %>%
  as_tibble()


biome_mask <-
  biome_mask %>%
  mutate(lon = if_else(lon < 20, lon + 360, lon))

Basemap and landmask

land_mask <- biome_mask %>%
  filter(seamask == 0) %>% 
  select(lon, lat)

map <- ggplot(land_mask,
              aes(lon, lat)) +
  geom_tile(fill = "grey80") +
  scale_y_continuous(breaks = seq(-60,60,30)) +
  scale_x_continuous(breaks = seq(0,360,60)) +
  coord_quickmap(expand = 0, ylim = c(-60, 80)) +
  theme(axis.title = element_blank(),
        axis.text = element_blank(),
        axis.ticks = element_blank())

map

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
1d6b4c8 jens-daniel-mueller 2024-03-24
map %>%
  write_rds(paste0("../data/","map.rds"))

Global ocean

Global ocean estimates are integrated or averaged across the following areas.

biome_mask <- biome_mask %>%
  filter(seamask == 1) %>% 
  select(lon, lat, atlantic:southern) %>% 
  pivot_longer(atlantic:southern,
               names_to = "region",
               values_to = "biome") %>%
  mutate(biome = as.character(biome))

biome_mask <- biome_mask %>%
  filter(biome != "0")

biome_mask <- biome_mask %>%
  mutate(biome = paste(region, biome, sep = "_"))

biome_mask <- biome_mask  %>% 
  mutate(biome = case_when(
    biome == "atlantic_1" ~ "NA-SPSS",
    biome == "atlantic_2" ~ "NA-STSS",
    biome == "atlantic_3" ~ "NA-STPS",
    biome == "atlantic_4" ~ "AEQU",
    biome == "atlantic_5" ~ "SA-STPS",
    # biome == "atlantic_6" ~ "MED",
    biome == "pacific_1" ~ "NP-SPSS",
    biome == "pacific_2" ~ "NP-STSS",
    biome == "pacific_3" ~ "NP-STPS",
    biome == "pacific_4" ~ "PEQU-W",
    biome == "pacific_5" ~ "PEQU-E",
    biome == "pacific_6" ~ "SP-STPS",
    # biome == "indian_1" ~ "Arabian Sea",
    # biome == "indian_2" ~ "Bay of Bengal",
    biome == "indian_1" ~ "Equatorial Indian",
    biome == "indian_2" ~ "Equatorial Indian",
    biome == "indian_3" ~ "Equatorial Indian",
    biome == "indian_4" ~ "Southern Indian",
    # biome == "arctic_1" ~ "ARCTIC-ICE",
    # biome == "arctic_2" ~ "NP-ICE",
    # biome == "arctic_3" ~ "NA-ICE",
    # biome == "arctic_4" ~ "Barents",
    str_detect(biome, "arctic") ~ "Arctic",
    biome == "southern_1" ~ "SO-STSS",
    biome == "southern_2" ~ "SO-SPSS",
    biome == "southern_3" ~ "SO-ICE",
    TRUE ~ "other"
  ))

biome_mask <-
  biome_mask %>%
  filter(biome != "other")

map +
  geom_tile(data = biome_mask,
            aes(lon, lat, fill = region)) +
  labs(title = "Considered ocean regions") +
  scale_fill_muted() +
  theme(legend.title = element_blank())

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
5f7453c jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
1d6b4c8 jens-daniel-mueller 2024-03-24
78465dc jens-daniel-mueller 2024-03-24
biome_mask %>%
  distinct(region, biome) %>% 
  write_rds("../data/region_biomes.rds")

Biomes

All biomes

In the following, all individual biomes are plotted by ocean region.

biome_mask %>%
  group_split(region) %>%
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = biome)) +
         labs(title = paste("Region:", .x$region)) +
         scale_fill_okabeito())
[[1]]

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
78465dc jens-daniel-mueller 2024-03-24

[[2]]

Version Author Date
e15a0e8 jens-daniel-mueller 2024-06-25
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
78465dc jens-daniel-mueller 2024-03-24

[[3]]

Version Author Date
8220f80 jens-daniel-mueller 2024-06-25
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
78465dc jens-daniel-mueller 2024-03-24

[[4]]

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
5f7453c jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
78465dc jens-daniel-mueller 2024-03-24

[[5]]

Key biomes

Following key biomes are highlighted throughout the analysis.

key_biomes <- c("NA-SPSS",
                "NA-STPS",
                "NP-SPSS",
                "PEQU-E")

key_biomes %>% 
  write_rds("../data/key_biomes.rds")

map +
  geom_tile(data = biome_mask %>% filter(biome %in% key_biomes),
            aes(lon, lat, fill = biome)) +
  labs(title = "Selected biomes to highlight") +
  scale_fill_muted() +
  theme(legend.title = element_blank())

Version Author Date
a60be97 jens-daniel-mueller 2024-06-12
de65385 jens-daniel-mueller 2024-06-12
03c415f jens-daniel-mueller 2024-06-11
0a7394b jens-daniel-mueller 2024-06-11
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
78465dc jens-daniel-mueller 2024-03-24
biome_mask %>%
  select(-biome) %>% 
  write_rds("../data/region_mask.rds")

biome_mask <-
  biome_mask %>%
  select(-region)

biome_mask %>%
  write_rds("../data/biome_mask.rds")

Super biomes

In addition to biomes, we focus our analysis on following combined super biomes.

super_biome_mask <- biome_mask  %>%
  mutate(
    biome = case_when(
      str_detect(biome, "NA-") ~ "North Atlantic",
      str_detect(biome, "NP-") ~ "North Pacific",
      str_detect(biome, "SO-") ~ "Southern Ocean",
      TRUE ~ "other"
    )
  )

super_biome_mask <-
  super_biome_mask %>%
  filter(biome != "other")

map +
  geom_tile(data = super_biome_mask,
            aes(lon, lat, fill = biome)) +
  labs(title = "Selected super biomes") +
  scale_fill_muted() +
  theme(legend.title = element_blank())

super_biomes <-
  super_biome_mask %>%
  distinct(biome) %>%
  pull()

super_biomes %>%
  write_rds("../data/super_biomes.rds")

super_biome_mask %>%
  write_rds("../data/super_biome_mask.rds")

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] khroma_1.9.0        stars_0.6-0         abind_1.4-5        
 [4] terra_1.7-65        sf_1.0-9            rnaturalearth_0.1.0
 [7] geomtextpath_0.1.1  colorspace_2.0-3    marelac_2.1.10     
[10] shape_1.4.6         ggforce_0.4.1       metR_0.13.0        
[13] scico_1.3.1         patchwork_1.1.2     collapse_1.8.9     
[16] forcats_0.5.2       stringr_1.5.0       dplyr_1.1.3        
[19] purrr_1.0.2         readr_2.1.3         tidyr_1.3.0        
[22] tibble_3.2.1        ggplot2_3.4.4       tidyverse_1.3.2    
[25] workflowr_1.7.0    

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0       ellipsis_0.3.2          class_7.3-20           
  [4] rprojroot_2.0.3         fs_1.5.2                rstudioapi_0.15.0      
  [7] proxy_0.4-27            farver_2.1.1            bit64_4.0.5            
 [10] fansi_1.0.3             lubridate_1.9.0         xml2_1.3.3             
 [13] codetools_0.2-18        cachem_1.0.6            knitr_1.41             
 [16] polyclip_1.10-4         jsonlite_1.8.3          gsw_1.1-1              
 [19] broom_1.0.5             dbplyr_2.2.1            compiler_4.2.2         
 [22] httr_1.4.4              backports_1.4.1         assertthat_0.2.1       
 [25] fastmap_1.1.0           gargle_1.2.1            cli_3.6.1              
 [28] later_1.3.0             tweenr_2.0.2            htmltools_0.5.3        
 [31] tools_4.2.2             rnaturalearthdata_0.1.0 gtable_0.3.1           
 [34] glue_1.6.2              Rcpp_1.0.11             RNetCDF_2.6-1          
 [37] cellranger_1.1.0        jquerylib_0.1.4         vctrs_0.6.4            
 [40] lwgeom_0.2-10           xfun_0.35               ps_1.7.2               
 [43] rvest_1.0.3             ncmeta_0.3.5            timechange_0.1.1       
 [46] lifecycle_1.0.3         googlesheets4_1.0.1     oce_1.7-10             
 [49] getPass_0.2-2           MASS_7.3-58.1           scales_1.2.1           
 [52] vroom_1.6.0             hms_1.1.2               promises_1.2.0.1       
 [55] parallel_4.2.2          yaml_2.3.6              memoise_2.0.1          
 [58] sass_0.4.4              stringi_1.7.8           highr_0.9              
 [61] e1071_1.7-12            checkmate_2.1.0         rlang_1.1.1            
 [64] pkgconfig_2.0.3         systemfonts_1.0.4       evaluate_0.18          
 [67] lattice_0.20-45         SolveSAPHE_2.1.0        bit_4.0.5              
 [70] processx_3.8.0          tidyselect_1.2.0        seacarb_3.3.1          
 [73] magrittr_2.0.3          R6_2.5.1                generics_0.1.3         
 [76] DBI_1.1.3               pillar_1.9.0            haven_2.5.1            
 [79] whisker_0.4             withr_2.5.0             units_0.8-0            
 [82] sp_1.5-1                modelr_0.1.10           crayon_1.5.2           
 [85] KernSmooth_2.23-20      utf8_1.2.2              tzdb_0.3.0             
 [88] rmarkdown_2.18          grid_4.2.2              readxl_1.4.1           
 [91] data.table_1.14.6       callr_3.7.3             git2r_0.30.1           
 [94] reprex_2.0.2            digest_0.6.30           classInt_0.4-8         
 [97] httpuv_1.6.6            textshaping_0.3.6       munsell_0.5.0          
[100] bslib_0.4.1